
Improving Drupal’s page loading performance

Thesis proposed to achieve the degree of bachelor
in computer science/ICT/knowledge technology

Wim Leers

Promotor : Prof. dr. Wim Lamotte
Co-promotor : dr. Peter Quax

Mentors: Stijn Agten & Maarten Wijnants

Hasselt University
Academic year 2008-2009

Contents

1 Abstract 4

2 Preface 4

3 Dutch summary/Nederlandstalige samenvatting 4

4 Terminology 5

5 Definition 6

6 Why it matters 7

7 The State of Drupal’s page loading performance 8

8 Key Properties of a CDN 9

9 Profiling tools 10

9.1 UA Profiler . 10

9.2 Cuzillion . 10

9.3 YSlow . 11

9.4 Hammerhead . 13

9.5 Apache JMeter . 15

9.6 Gomez/Keynote/WebMetrics/Pingdom 16

9.6.1 Limited number of measurement points 16

9.6.2 No real-world browsers . 16

9.6.3 Unsuited for Web 2.0 . 17

9.6.4 Paid & closed source . 17

9.7 Jiffy/Episodes . 17

9.7.1 Jiffy . 17

9.7.2 Episodes . 18

9.8 Conclusion . 21

1

10 Improving Drupal: Episodes module 22

10.1 The goal . 22

10.2 Making episodes.js reusable . 24

10.3 Episodes module: integrating with Drupal 24

10.3.1 Implementation . 24

10.3.2 Screenshots . 26

10.4 Episodes Server module: reports 29

10.4.1 Implementation . 29

10.4.2 Screenshots . 30

10.4.3 Desired future features . 31

10.5 Insights . 32

10.6 Feedback from Steve Souders . 32

11 Daemon 33

11.1 Goals . 33

11.2 Configuration file design . 35

11.3 Python modules . 36

11.3.1 filter.py . 36

11.3.2 pathscanner.py . 38

11.3.3 fsmonitor.py . 38

11.3.4 persistent queue.py and persistent list.py 40

11.3.5 Processors . 40

11.3.6 Transporters . 45

11.3.7 config.py . 48

11.3.8 daemon thread runner.py 49

11.4 Putting it all together: arbitrator.py 49

2

11.4.1 The big picture . 49

11.4.2 The flow . 50

11.4.3 Pipeline design pattern 52

11.5 Performance tests . 55

11.6 Possible further optimizations . 55

11.7 Desired future features . 56

12 Improving Drupal: CDN integration 57

12.1 Goals . 57

12.2 Drupal core patch . 58

12.3 Implementation . 58

12.4 Comparison with the old CDN integration module 59

12.5 Screenshots . 60

13 Used technologies 66

14 Feedback from businesses 67

15 Conclusion 68

3

1 Abstract

TODO

2 Preface

TODO

3 Dutch summary/Nederlandstalige samenvat-
ting

TODO

4

4 Terminology

above the fold The initially visible part of a web page: the part that you can
see without scrolling

AHAH Asynchronous HTML And HTTP. Similar to AJAX, but the transfered
content is HTML instead of XML.

base path The relative path in a URL that defined the root of a web site. E.g.
if the site http://yoursite.com/ is where a web site lives, then the base
path is /. If you’ve got another web site at http://yoursite.com/subsite/,
then the base path for that web site is /subsite/.

browser A web browser is an application that runs on end user computers
to view web sites (which live on the World Wide Web). Examples are
Firefox, Internet Explorer, Safari and Opera.

CDN A content delivery network (CDN) is a collection of web servers dis-
tributed across multiple locations to deliver content more efficiently to
users. The server selected for delivering content to a specific user is typi-
cally based on a measure of network proximity.

component A component of a web page, this can be a CSS style sheet, a
JavaScript file, an image, a font, a movie file, etc.

document root The absolute path on the file system of the web server that
corresponds with the root direcory of a web site. This is typically some-
thing like /htdocs/yoursite.com.

episode An episode in the page loading sequence.

Episodes The Episodes framework [40] (note the capital ’e’).

page loading performance The time it takes to load a web page and all its
components.

page rendering performance The time the server needs to render a web
page.

PoP A Point of Presence is an access point to the internet; where multiple
Internet Service Providers connect with each other.

SLA Service-Level Agreement, part of a service contract where the level of
service is formally defined. In practice, the term SLA is sometimes used
to refer to the contracted delivery time (of the service) or performance.

web page An (X)HTML document that potentially references components.

5

5 Definition

When a end user loads a web page, the time perceived by him until the page
has loaded entirely is called the end user response time. Unlike what you might
think, the majority of this time isn’t spent at the server, generating the page!
The generating (back-end) and transport of the HTML document (front-end) is
typically only 10-20% of the end user response time. The other 80-90% of the
time is spent on loading the components (CSS stylesheets, JavaScript, images,
movies, etc.) in the page (front-end only). Figure 1 clarifies this visually:

Figure 1: End user response time of a typical web page.

It should be obvious now that it’s far more effective to focus on front-end per-
formance than it is to focus on back-end performance, because it’s got a greater
potential. It’s also easier to optimize than the back-end.

6

6 Why it matters

Page loading performance matters for a single reason:

Users care about performance!

Your web site’s visitors won’t be timing the page loads themselves, but they
will browse elsewhere when you’re forcing them to wait too long. Fast web sites
are rewarded, slow web sites are punished. Fast web sites get more visitors,
have happier visitors and their visitors return more often. If the revenue of your
company is generated through your web site, you’ll want to make sure that
page loading performance is as good as possible, because it will maximize your
revenue as well.

Some statistics:

• Amazon: 100 ms of extra load time caused a 1% drop in sales [1]

• Yahoo!: 400 ms of extra load time caused a 5-9% drop in full-page traffic
(meaning that they leave before the page has finished loading) [1]

• Google: 500 ms of extra load time caused 20% fewer searches [1]

• Google: trimming page size by 30% resulted in 30% more map requests
[2]

It’s clear that even the smallest delays can have disastrous and wondrous effects.

Now, why is this important to Drupal – because this bachelor thesis is about
improving Drupal’s page loading performance in particular? Because then the
Drupal Experience is better: a faster web site results in happier users and
developers. If your site is a commercial one – either through ads or a store,
then it also impacts your revenue. More generally, a faster Drupal would affect
many:

• Drupal is increasinly used for big, high-traffic web sites, thus a faster
Drupal would affect a lot of people

• Drupal is still growing in popularity (according to its usage statistics,
which only includes web sites with the Update Status module enabled,
there are over 140,000 web sites as of February 22, 2009, see [4]) and
would therefor affect ever more people

• Drupal is international, thanks to its i18n/L10n support, and thanks to
that it’s used for sites with very international audiences (whom face high
network latencies) and developing countries (where low-speed internet con-
nections are commonplace). A faster Drupal would make a big difference
there as well.

7

7 The State of Drupal’s page loading perfor-
mance

So you might expect that Drupal has already invested heavily in improving
its page loading performance. Unfortunately, that’s not true. Hopefully this
bachelor thesis will help to gain some developer attention.

Because of this, the article I wrote more than a year ago is still completely
applicable. It doesn’t make much sense to just rephrase the article here in my
thesis text, so instead I’d like to forward you to that article [5].

I’ve repeated the remaining problems here for the sake of clarity:

• Static files (CSS, JavaScript, images) should be served with proper HTTP
headers so that the browser can cache them and reduce the number of
HTTP requests for each page load. Especially the Expires header is im-
portant here.

• To allow for CDN integration in Drupal, the ability to alter file URLs
dynamically is needed, but this isn’t supported yet.

• CSS and JS files should be served GZIPped when the browser supports it.

• JavaScript files should be at the bottom (just before the closing </body>
tag) whenever possible.

• JavaScript files should be minified.

• Drupal should provide a mechanism to render the same content in multiple
formats: (X)HTML (for the regular browser), partial HTML or JSON
(for AHAH), XML (for AJAX) and so on. You should be able to set
transformations, including cacheability and GZIPability per format.

• CSS sprites should be generated automatically.

8

8 Key Properties of a CDN

I’ll repeat the definition from the terminology section:

A content delivery network (CDN) is a collection of web servers
distributed across multiple locations to deliver content more effi-
ciently to users. The server selected for delivering content to a spe-
cific user is typically based on a measure of network proximity.

It’s extremely hard to decide which CDN to use. In fact, by just looking at a
CDN’s performance, it’s close to impossible [6, 7]!

So you must look at the featureset – instead of performance – when deciding.
Depending on your audience, the geographical spread (the number of PoPs
around the world) may be very important to you. A 100% SLA is also nice to
have.
You may also choose a CDN based on the population methods it supports.
There are two big categories here: push and pull. Pull requires virtually no
work on your side: all you have to do, is rewrite the URLs to your files. The
CDN will then apply the Origin Pull technique and will periodically pull the
files from the origin (that’s your server). How often that is, depends on how
you’ve configured headers (particularly the Expires headers). It of course also
depends on the software driving the CDN – there is no standard in this field.
It may also result in redundant traffic because files are being pulled from the
origin server more often than they actually change, but this is a minor drawback
in most situations. Push on the other hand, requires a fair amount of work on
your side to sync files to the CDN. But you gain flexibility because you can
decide when files are synced, how often and if any preprocessing should happen.
That’s much harder to do with Origin Pull CDNs. See table 1 for an overview
on this.
It should also be noted that some CDNs, if not most, support both Origin Pull
and one or more push methods.
The last thing to consider is vendor lock-in. Some CDNs offer highly specialized
features, such as video transcoding. If you then discover another CDN that is
significantly cheaper, you cannot easily move, because you’re depending on your
current CDN’s specific features.

Pull Push
transfer protocol none FTP, SFTP, WebDAV, Amazon S3 . . .

advantages virtually no setup flexibility, no redundant traffic
disadvantages no flexibility, redundant traffic setup

Table 1: Pull versus Push CDNs comparison chart.

9

9 Profiling tools

If you can not measure it, you can not improve it.
Lord Kelvin

The same applies to page loading performance: if you can’t measure it, you
can’t know which parts have the biggest effect and thus deserve your focus.
So before doing any real work, we’ll have to figure out which tools can help us
analyzing page loading performance. “profiling” turns out to be a more accurate
description than “analyzing”:

In software engineering, performance analysis, more commonly
today known as profiling, is the investigation of a program’s behavior
using information gathered as the program executes. The usual goal
of performance analysis is to determine which sections of a program
to optimize — usually either to increase its speed or decrease its
memory requirement (or sometimes both).

So we’ll go through a list of tools: UA Profiler, Cuzillion, YSlow, Hammerhead,
Apache JMeter, Gomez/Keynote/WebMetrics/Pingdom and Jiffy/Episodes. As
you can tell, it’s a pretty long list, so I’ll pick the tools I’ll use while improving
Drupal’s page loading performance based on two factors:

1. How the tool could help improve Drupal core’s page loading performance.

2. How the tool could help Drupal site owners profile their site’s page loading
performance.

9.1 UA Profiler

UA Profiler [8] is a crowd-sourced project for gathering browser performance
characteristics (parallel connections, downloading scripts without blocking, caching,
etc.). The tests run automatically when you navigate to the test page from any
browser – this is why it’s powered by crowdsourcing.

It’s a handy, informative tool to find out which browser supports which features
related to page loading performance.

9.2 Cuzillion

Cuzillion [9] was introduced [10] on April 25, 2008 so it is a relatively new tool.
Its tag line, “‘cuz there are zillion pages to check” indicates what it’s about:
there are a lot of possible combinations of stylesheets, scripts and images. Plus
they can be external or inline. And each combination has different effects.
Finally, to further complicate the situation, all these combinations depend on
the browser being used. It should be obvious that without Cuzillion, it’s an
insane job to figure out how each browser behaves:

10

Before I would open an editor and build some test pages. Firing
up a packet sniffer I would load these pages in different browsers
to diagnose what was going on. I was starting my research on ad-
vanced techniques for loading scripts without blocking and realized
the number of test pages needed to cover all the permutations was
in the hundreds. That was the birth of Cuzillion.

Cuzillion is not a tool that helps you analyze any existing web page. Instead,
it allows you to analyze any combination of components. That means it’s a
learning tool. You could also look at it as a browser profiling tool instead of all
other listed tools, which are page loading profiling tools.

Let’s go through a simple example for a better understanding. How does the
following combination of components (in the <body> tag) behave in different
browsers?

1. an image on domain 1 with a 2 second delay

2. an inline script with a 2 second execution time

3. an image on domain 1 with a 2 second delay

First you create this setup in Cuzillion (see figure 2 on the following page). This
generates a unique URL. You can then copy this URL to all browsers you’d like
to test.

As you can see, Safari and Firefox behave very differently. In Safari (see figure 3
on the next page), the loading of the first image seems to be deferred until the
inline script has been executed. In Firefox (see figure 4 on page 13), the first
image is immediately rendered and after a delay of 2 seconds – indeed the
execution time of the inline script – the second image is rendered. Without
going into details about this, it should be clear that Cuzillion is a simple, yet
powerful tool to learn about browser behavior, which can in turn help to improve
the page loading performance.

9.3 YSlow

YSlow [15] also is a Firebug [13] extension (see 5 on page 14) that can be used
to analyze page loading performance through 13 rules. These were part of the
original 14 rules [17] – of which there are now 34 – of “Exceptional Performance”
[16], as developed the Yahoo! performance team.

YSlow 1.0 can only evaluate these 13 rules and has a hardcoded grading algo-
rithm. You should also remember that YSlow just checks how well a web page
implements these rules. It analyzes the content of your web page (and the head-
ers that were sent with it). For example, it doesn’t test the latency or speed of
a CDN, it just checks if you are using one. As an example, because you have

11

Figure 2: The example situation created in Cuzillion.

Figure 3: The example situation in Safari 3.

12

Figure 4: The example situation in Firefox 3.

to tell YSlow (via Firefox’ about:config) what the domain name of your CDN
is, you can even fool YSlow into thinking any site is using a CDN: see 6 on the
following page.

That, and the fact that some of the rules it analyzes are only relevant to very
big web site. For example, one of the rules (#13, “Configure ETags”) is only
relevant if you’re using a cluster of web servers. For a more in-depth article
on how to deal with YSlow’s evaluation of your web sites, see [18]. YSlow 2.0
[19] aims to be more extensible and customizable: it will allow for community
contributions, or even web site specific rules.

Since only YSlow 1.0 is available at the time of writing, I’ll stick with that.
It’s a very powerful and helpful tool as it stands, it’ll just get better. But
remember the two caveats: it only verifies rules (it doesn’t measure real-world
performance) and some of the rules may not be relevant for your web site.

9.4 Hammerhead

Hammerhead [11, 12] is a Firebug [13] extension that should be used while devel-
oping. It measures how long a page takes to load and it can load a page multiple
times, to calculate the average and mean page load times. Of course, this is a
lot less precise than real-world profiling, but it allows you to profile while you’re
working. It’s far more effective to prevent page loading performance problems

13

Figure 5: YSlow applied to drupal.org.

(a) The original YSlow analysis. (b) The resulting YSlow analysis.

Figure 6: Tricking YSlow into thinking drupal.org is using a CDN.

14

Figure 7: Hammerhead.

due to changes in code, because you have the test results within seconds or
minutes after you’ve made these changes!

Of course, you could also use YSlow (see section 9.3) or FasterFox [14], but
then you have to load the page multiple times (i.e. hammer the server, this
is where the name comes from). And you’d still have to set up the separate
testing conditions for each page load: empty cache, primed cache and for the
latter there are again two possible situations: disk cache and memory cache or
just disk cache. Memory cache is of course faster than disk cache; that’s also
why that distinction is important. Finally, it supports exporting the resulting
data into CSV format, so you could even create some tools to roughly track
page loading performance throughout time.
See figure 7.

9.5 Apache JMeter

Apache JMeter [21] is an application designed to load test functional behavior
and measure performance. In the perspective of profiling page loading perfor-
mance, the relevant features are: loading of web pages with and without its
components and measuring the response time of just the HTML or the HTML
and all the components it references.

However, it has several severe limitations:

• Because it only measures from one location – the location from where it’s
run, it doesn’t give a good big picture.

• It isn’t an actual browser, so it doesn’t download components referenced
from CSS or JS files.

• Also because it isn’t an actual browser, it doesn’t behave the same as
browsers when it comes to parallel downloads.

15

• It requires more setup than Hammerhead (see 9.4 on page 13), so it’s less
likely that a developer will make JMeter part of his workflow.

It can be very useful in case you’re doing performance testing (How long does the
back-end need to generate certain pages?), load testing (How many concurrent
users can the back-end/server setup handle?) and stress testing (How many
concurrent users can it handle until errors ensue?)
To learn more about load testing Drupal with Apache JMeter, see [22, 23]

9.6 Gomez/Keynote/WebMetrics/Pingdom

Gomez [24], KeyNote [25], WebMetrics [26] and Pingdom [27] are examples of
3rd-party (paid) performance monitoring systems.

They have four major disadvantages:

1. limited number of measurement points

2. no real-world browsers are used

3. unsuited for Web 2.0

4. paid & closed source

9.6.1 Limited number of measurement points

These services poll your site at regular or irregular intervals. This poses analysis
problems: for example, if one your servers is very slow just at that one moment
that any of these services requests a page, you will be told that there’s a major
issue with your site. But that’s not necessarily true: it might be a fluke.

9.6.2 No real-world browsers

Most, if not all of these services use their own custom clients [34]. That implies
their results aren’t a representation of the real-world situation, which means you
can’t rely upon these metrics for making decisions: what if a commonly used
real-world browser behaves completely differently? Even if the services would
all use real-world browsers, they would never reflect real-world performance,
because browser usage evolves over time and aren’t the same for any two web
sites.

16

9.6.3 Unsuited for Web 2.0

The problem with these services is that they still assume the World Wide Web
is the same as it was 10 years ago, where JavaScript was rather a scarcity than
the abundancy it is today. They still intrerpret the onload event as the “end
time” for response time measurements. In Web 1.0, that was fine. But as the
adoption of AJAX [28] has grown, the onload event has become less and less
representative of when the page is ready (i.e. has completely loaded), because
the page can continue to load additional components. For some web sites, the
“above the fold” section of a web page has been optimized, thereby loading
“heavier” content later, below the fold. Thus the “page ready” point in time is
shifted from its default.

In both of these cases, the onload event is too optimistic [37].

There are two ways to measure Web 2.0 web sites [38]:

1. manual scripting : identify timing points using scripting tools (Selenium
[29], Keynote’s KITE [30], etc.). This approach has a long list of dis-
advantages: low accuracy, high switching costs, high maintenance costs,
synthetic (no real-world measurements).

2. programmatic scripting : timing points are marked by JavaScript (Jiffy
[35], Gomez Script Recorder [31], etc.). This is the preferred approach: it
has lower maintenance costs and a higher accuracy because the code for
timing is included in the other code and measures real user traffic.
If we would now work on a shared implementation of this approach, then
we wouldn’t have to reinvent the wheel every time and switching costs
would be much lower. See the Jiffy/Episodes later on.

9.6.4 Paid & closed source

You’re dependent upon the 3rd party service to implement new instrumentations
and analysises. There’s a high cost for the implementation cost and a very high
cost when switching to a different 3rd party service.

9.7 Jiffy/Episodes

9.7.1 Jiffy

Jiffy [33, 34, 35] is designed to give you real-world information on what’s actually
happening within browsers of users that are visiting your site. It shows you
how long pages really take to load and how long events that happen while
or after your page is loading really take. Especially when you don’t control
all the components of your web site (e.g. widgets of photo and music web

17

sites, contextual ads or web analytics services), it’s important that you can
monitor their performance. It overcomes to 4 major disadvantages that were
listed previously:

1. it can measure every page load if desired

2. real-world browsers are used, becuase it’s just JavaScript code that runs
in the browser

3. well-suited for Web 2.0, because you can configure it to measure anything

4. open source

Jiffy consists of several components:

• Jiffy.js: a library for instrumenting your pages and reporting measure-
ments

• Apache configuration: to receive and log measurements

• Ingestor: parse logs and store in a database (currently only supports Or-
acle XE)

• Reporting toolset

• Firebug extension [36], see figure 8 on the next page

Jiffy was built to be used by the WhitePages web site [32] and has been running
on that site. At more than 10 million page views per day, it should be clear
that Jiffy can scale quite well. It’s been released as an open source project, but
at the time of writing, the last commit was on July 25, 2008. So it’s a dead
project.

9.7.2 Episodes

Episodes [40, 41] is very much like Jiffy. There are two differences:

1. Episodes’ goal is to become an industry standard. This would imply
that the aforementioned 3rd party services (Gomez/Keynote/WebMet-
rics/Pingdom) would take advantage of the the instrumentations imple-
mented through Episodes in their anylises.

2. Most of the implementation is built into browsers (window.postMessage(),
addEventListener()), which means there is less code that must be down-
loaded. (Note: the newest versions of browsers are necessary: Internet
Explorer 8, Firefox 3, WebKit Nightlies and Opera 9.5. An additional
backwards compatibility JavaScript file must be downloaded for older
browsers.)

18

Figure 8: Jiffy.

19

Figure 9: Episodes.

Steve Souders outlines the goals and vision for Episodes succinctly in these two
paragrahps:

The goal is to make Episodes the industrywide solution for mea-
suring web page load times. This is possible because Episodes has
benefits for all the stakeholders. Web developers only need to learn
and deploy a single framework. Tool developers and web metrics ser-
vice providers get more accurate timing information by relying on
instrumentation inserted by the developer of the web page. Browser
developers gain insight into what’s happening in the web page by
relying on the context relayed by Episodes.

Most importantly, users benefit by the adoption of Episodes.
They get a browser that can better inform them of the web page’s
status for Web 2.0 apps. Since Episodes is a lighter weight design
than other instrumentation frameworks, users get faster pages. As
Episodes makes it easier for web developers to shine a light on per-
formance issues, the end result is an Internet experience that is faster
for everyone.

A couple of things can be said about the current codebase of Episodes:

• There are two JavaScript files: episodes.js and episodes-compat.js.
The latter is loaded on-the-fly when an older browser is being used that
doesn’t support window.postMessage(). These are operational but haven’t
had wide testing yet.

• It uses the same query string syntax as Jiffy uses, which means Jiffy’s
Apache configuration, ingestor and reporting toolset can be reused, at
least partially.

• It has its own Firebug extension, see figure 9.

So, Episodes’ very raison d’existence is to achieve a concensus on a JavaScript-
based page loading instrumentation toolset. It aims to become an industry

20

standard and is maintained by Steve Souders, who is currently on Google’s
payroll to work on all things page loading performance full-time (which suggests
we might see integration with Google’s Analytics [39] service in the long term).
Add in the fact that Jiffy hasn’t been updated since its initial release, and it
becomes clear that Episodes is the better long-term choice.

9.8 Conclusion

There isn’t a single, “do-it-all” tool that you should use. Instead, you should
wisely combine all of the above tools. Use the tool that fits the task at hand.

However, for the scope of this thesis, there is one tool that jumps out: YSlow. It
allows you to carefully analyze which things Drupal could be doing better. It’s
not necessarily meaningful in real-world situations, because it e.g. only checks
if you’re using a CDN, not how fast that CDN is. However, the fact that it tests
whether a CDN is being used (or Expired headers, or gzipped components, or
. . .) is enough to find out what can be improved, to maximize the potential
performance.
This kind of analysis is exactly what I’ll perform in the next section: 7 on page 8.

There is one more tool that jumps out for real, practical use: Episodes. This
tool, if properly integrated with Drupal, would be a key asset to Drupal, be-
cause it would enable web site owners to track the real-world page loading per-
formance. It would allow contributed module developers to support Episodes.
This, in turn, would be a good indicator for a module’s quality and would allow
the web site owner/administrator/developer to carefully analyze each aspect of
his Drupal web site.
I will create this integration as part of my bachelor thesis, see section 10 on the
following page.

21

10 Improving Drupal: Episodes module

The work I’ll be doing on improving Drupal’s page loading performance should
be practical, not theoretical. It should have a real-world impact.

To ensure that that also happens, I wrote the Episodes module [42]. This module
integrates the Episodes framework for timing web pages (see section 9.7.2 on
page 18) with Drupal on several levels – all without modifying Drupal core:

• Automatically includes the necessary JavaScript files and settings on each
appropriate page.

• Automatically inserts the crucial initializiation variables at the beginning
of the head tag.

• Automatically turns each behavior (in Drupal.behaviors) is automati-
cally into its own episode.

• Provides a centralized mechanism for lazy loading callbacks that perform
the lazy loading of content. These are then also automatically measured.

• For measuring the css, headerjs and footerjs episodes, you need to
change a couple of lines in the page.tpl.php file of your theme.

• Provides basic reports with charts to make sense of the collected data.

The Episodes module in fact contains two modules: the Episodes module and
the Episodes Server module. The former is the actual integration and can be
used without the latter. The latter can be installed on a separate Drupal web
site (on a separate server) or on the same. It provides basic reports.

You could also choose to not enable the Episodes Server module and use an
external web service to generate reports, but for now, none of these services
exist yet. That’s a void that will probably be filled in the next few years by the
business world.

10.1 The goal

The goal is to measure the different episodes of loading a web page. Let me
clarify that via a timeline, while referencing the HTML in listing 1 on the
following page.

The main measurement points are:

• starttime: time of requesting the web page (when the unbeforeunload
event fires, the time is stored in a cookie); not in the HTML file

22

Listing 1: Sample Drupal HTML file.
1 < !DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 S t r i c t //EN”
2 ”http ://www.w3 . org /TR/xhtml1/DTD/xhtml1−s t r i c t . dtd”>
3 <html xmlns=”http ://www.w3 . org /1999/ xhtml” xml : lang=”en” lang=”en” dir=” l t r ”>
4 <head>
5 <t i t l e>Sample Drupal HTML</ t i t l e>
6 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=utf−8” />
7 <l ink rel=” shor tcut i con ” href=”/misc/ f av i con . i c o ” type=”image/x−i con ” />
8 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” a l l ” href=”main . c s s ” />
9 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” pr in t ” href=”more . c s s ” />

10 <script type=” text / j a v a s c r i p t ” src=”main . j s ”></ script>
11 <script type=” text / j a v a s c r i p t ”>
12 < !−−//−−>< ! [CDATA[//>< !−−
13 jQuery . extend (Drupal . s e t t ing s , { ”basePath” : ”/ drupal /” , ”more” : true }) ;
14 //−−>< !]]>
15 </ script>
16 < !−−[i f l t IE 7]>
17 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” a l l ” href=” f ix−i e . c s s />
18 < ! [e nd i f]−−>
19 </head>
20 <body>
21 <!−−
22 l o t s
23 o f
24 HTML
25 here
26 −−>
27 <s c r i p t type=”text/ j a v a s c r i p t ” s r c=”more . j s ”></s c r i p t >
28 </body>
29 </html>

• firstbyte: time of arrival of the first byte of the HTML file (the JavaScript
to measure this time should be as early in the HTML as possible for
highest possible accuracy); line 1 of the HTML file

• domready: when the entire HTML document is loaded, but just the
HTML, not the referenced files

• pageready: when the onload event fires, this happens when also all refer-
enced files are loaded

• totaltime: when everything, also the possible lazy-loaded content, is loaded
(i.e. pageready + the time to lazy-load content)

Which make for these basic episodes:

• backend episode = firstbyte - starttime

• frontend episode = pageready - firstbyte

• domready episode = domready - firstbyte, this episode is contained within
the frontend episode

• totaltime episode = totaltime - starttime, this episode contains the back-
end and frontend episodes

These are just the basic time measurements and episodes. It’s possible to also
measure the time it took to load the CSS (lines 8-9) and JS files in the header

23

1 <head>
2
3 < !−− I n i t i a l i z e EPISODES. −−>
4 <script type=” text / j a v a s c r i p t ”>
5 var EPISODES = EPISODES | | {} ;
6 EPISODES. frontendStartTime = Number(new Date ()) ;
7 EPISODES. compatScr iptUrl = ” l i b / ep i sodes−compat . j s ” ;
8 EPISODES. l ogg ing = true ;
9 EPISODES. beaconUrl = ” ep i s ode s /beacon” ;

10 </ script>
11
12 < !−− Load episodes . j s . −−>
13 <script type=” text / j a v a s c r i p t ” src=” l i b / ep i s ode s . j s ” />
14
15 < !−− Rest of head tag . −−>
16 < !−− . . . −−>
17
18 </head>

(line 10) and in the footer (line 27), for example. It’s possible to measure just
about anything you want.

For a visual example of all the above, see figure 12 on page 28.

10.2 Making episodes.js reusable

The episodes.js file provided at the Episodes example [43] was in fact just a
rough sample implementation, an implementation that indicates what it should
look like. It contained several hardcoded URLs, didn’t measure the sensible
default episodes, contained a few bugs. In short, it was an excellent and solid
start, but it needed some work to be truly reusable.

I improved episodes.js to make it reusable, so that I could integrate it with
Drupal without adding Drupal-specific code to it. I made it so that all you have
to do is something like this:

This way, you can set the variables to what you need them to be without
customizing episodes.js. Line 6 should be as early in the page as possible,
because it’s the most important reference timestamp.

10.3 Episodes module: integrating with Drupal

10.3.1 Implementation

Here’s a brief overview with the highlights of what had to be done to integrate
Drupal with the Episodes framework.

• Implemented hook install(), through which I set a module weight of
-1000. This ensures the hook implementations of this module are always
executed before all others.

24

Listing 2: Drupal.attachBehaviors() override.

Drupal . attachBehaviors = func t i on (context) {
u r l = document . l o c a t i o n ;

for (behavior in Drupal . behav ior s) {
window . postMessage (”EPISODES: mark : ” + behavior , u r l) ;
Drupal . behav ior s [behavior] (context) ;
window . postMessage (”EPISODES: measure : ” + behavior , u r l) ;

}
} ;

• Implemented hook init(), which is invoked at the end of the Drupal boot-
strap process. Through this hook I automatically insert the JavaScript
into the <head> tag that’s necessary to make Episodes work (see sec-
tion 10.2 on the preceding page). Thanks to the extremely low module
weight, the JavaScript code it inserts is the first tag in the <head> tag.

• Also through this same hook I add Drupal.episodes.js, which provides
the actual integration with Drupal. It automatically creates an episode
for each Drupal “behavior”. (A behavior is written in JavaScript and adds
interactivity to the web page.) Each time new content is added to the page
through AHAH, Drupal.attachBehaviors() is called and automatically
attaches behaviors to new content, but not to existing content. Through
Drupal.episodes.js, Drupal’s default Drupal.attachBehaviors() method
is overridden – this is very easy in JavaScript. In this overridden version,
each behavior is automatically measured as an episode.
Thanks to Drupal’s existing abstraction and the override I’ve implemented,
all JavaScript code can be measured through Episodes without hacking
Drupal core.
A simplified version of what it does can be seen in listing 2.

• Some of the Drupal behaviors are too meaningless to measure, so it’d be
nice to be able to mark some of the behaviors as ignored. That’s also
something I implemented. Basically I do this by locating every directory
in which one or more *.js files exist, create a scan job for each of these
and queue them in Drupal’s Batch API [44]. Each of these jobs scans each
*.js file, looking for behaviors. Every detected behavior is stored in the
database and can be marked as ignored through a simple UI that uses the
Hierarchical Select module [46].

• For measuring the css and headerjs episodes, it’s necessary to make a
couple of simple (copy-and-paste simple) changes to the page.tpl.php
of the Drupal theme(s) you’re using. These changes are explained in the
README.txt file that ships with the Episodes module. This is the only
manual change to code that can be done – it’s recommended, but not
required.

• And of course a configuration UI (see figure 10 on the following page and
figure 11 on page 27) using the Forms API [45]. It ensures the beacon
URL exists and is properly configured (i.e. returns a zero-byte file).

25

10.3.2 Screenshots

Figure 10: Episodes module settings form.

26

Figure 11: Episodes module behaviors settings form.

27

Figure 12: Results of Episodes module in the Episodes Firebug add-on.

28

10.4 Episodes Server module: reports

Only basic reports are provided, highlighting the most important statistics and
visualizing them through charts. Advanced/detailed reports are beyond the
scope of this bachelor thesis, because they require extensive performance re-
search (to be able to handle massive datasets), database indexing optimization
and usability research.

10.4.1 Implementation

• First of all, the Apache HTTP server is a requirement, this application’s
logging component is used for generating the log files. Its logging compo-
nent has been proven to be scalable, so there’s no need to roll our own.
The source of this idea lies with Jiffy (see section 9.7.1 on page 17).

• The user must make some changes to his httpd.conf configuration file
for his Apache HTTP server. As just mentioned, my implementation is
derived from Jiffy’s, yet every configuration line is different.

• The ingestor parses the Apache log file and moves the data to the database.
I was able to borrow a couple of regular expressions from Jiffy’s ingestor
(which is written in Perl . . .) but I rewrote it completely to be clean
and simple code, conform the Drupal coding guidelines. It detects the
browser, browser version and operating system from the User Agent that
was logged with the help of the Browser.php library [48].
This is guaranteed to work thanks to the included meticulous unit tests.

• For the reports, I used the Google Chart API [47]. You can see the result
in figure 14 on page 31.

• And of course again a configuration UI (see figure 13 on the following page)
using the Forms API [45]. It ensures the log file exists and is accessible
for reading.

29

10.4.2 Screenshots

Figure 13: Episodes Server module settings form.

30

Figure 14: Report generated by the Episodes Server module.

10.4.3 Desired future features

Due to lack of time, the basic reports are . . . well . . . very basic. It’d be nice
to have more charts and to be able to filter the data of the charts. In particular,
these 3 filters would be very useful:

1. filter by timespan: all time, 1 year, 6 months, 1 month, 1 week, 1 day

2. filter by browser and browser version

3. filter by (parts of) the URL

31

10.5 Insights

• Episodes module

– Generating the back-end start time on the server can never work
reliably because the clocks of the client (browser) and server are
never perfectly in sync, which is required.

– Even just measuring the page execution time on the server cannot
work because of this same reason. You can accurately measure this
time, but you can’t relate it to the measurements in the browser. I
implemented this using implementations Drupal’s hook boot() and
hook exit() hooks and came to this conclusion.

– On the first page load, the onbeforeunload cookie is not yet set
and therefor the backend episode cannot be calculated, which in
turn prevens the pageready and totaltime episodes from being
calculated. This is of course also a problem when cookies are disabled,
because then the backend episode can never be calculated. There is
no way around this until the day that browsers provide something
like document.requestTime.

• Episodes Server module

– Currently the same database as Drupal is being used. Is this scalable
enough for analyzing the logs of web sites with millions of page views?
No. Writing everything to a SQLite database wouldn’t be better.
The real solution is to use a different server to log to or even a web
service. Better even is to log to a non-app server of your own and
then send the logs to an external web service. Then you stay in
control of all your data! (Avoiding vendor lock-in.) The main reason
I opted for using the same database, is ease of development.
Optimizing the profiling tool is not the goal of this bachelor thesis,
optimizing page loading performance is.

10.6 Feedback from Steve Souders

I explained Steve Souders what I wanted to achieve through this bachelor thesis
and the initial work I had already done on integrating Episodes with Drupal.
This is how his reply started:

Wow.

Wow, this is awesome.

So, at least he thinks that this was a worthwile job and if he thinks that, then
it will probably be worthwhile/helpful for the Drupal community as well.

32

11 Daemon

So now that we have the tools to accurately (or at least representatively) measure
the effects of using a CDN, we still have to start using a CDN. So, let’s look at
how we can make a web site use a CDN.

As explained in section 8 on page 9, there are two very different methods for
populating CDNs. Supporting pull is easy, supporting push is a lot of work.
But if we want to avoid vendor lock-in, it’s necessary to be able to transparently
switch between either pull or any of the transfer protocols for push.

And to avoid vendor lock-in even further, it’s necessary that we can do the pre-
processing ourselves (be that video transcoding, image optimization or anything
else).

That’s why the meat of this thesis is about a daemon that makes it just as easy
to use eith push or pull CDNs and that gives you full flexibility in what kind
of preprocessing you would like to perform. All you will have to do to integrate
your web site with a CDN is:

1. installing the daemon

2. tell it what to do by filling out a simple configuration file

3. start the daemon

4. retrieve the URLs of the synced files from an SQLite database

11.1 Goals

As said before, the ability to use either push or pull CDNs is an absolute ne-
cessity, as is the ability to process files before they are synced to the CDN.
However, there’s more to it than just that, so here’s a fill list of goals.

• Easy to use: the configuration file is the interface and explain itself just
by its structure

• Transparency: the transfer protocol(s) supported by the CDN should be
irrelevant

• Mixing CDNs and static file servers

• Processing before sync: image optimization, video transcoding . . .

• Detect (& sync) new files instantly: through inotify on Linux, FSEvents
on Mac OS X and the FindFirstChangeNotification AP or ReadDirecto-
ryChanges API on Windows (there’s also the FileSystemWatcher class for
.NET)

33

• Robustness: when the daemon is stopped (or when it crashed), it should
know where it left off and sync all added, modified and deleted files

• Scalable: syncing 1,000 or 1,000,000 files – and keeping them synced –
should work just as well

• Unit testing wherever feasible

• Design for reuse wherever possible

• Low resource consumption (except for processors, which may be very de-
manding because of their nature)

• No dependencies other than Python (but processors can have additional
dependencies)

A couple of these goals need more explaining.

The transparency goal should speak for itself, but you may not yet have realized
its impact: this is what will avoid high CDN provider switching costs, that is,
it helps to avoid vendor lock-in.

Detecting and syncing files instantly is a must to ensure CDN usage is as high
as possible. If new files would only be detected every 10 minutes, then visitors,
who might have uploaded images as part of the content they’ve created, will
be downloading the image from the web server (or maybe static file server),
which is suboptimal, considering that they could’ve been downloading it from
the CDN.

The ability to mix CDNs and static file servers makes it possible to either
maximize the page loading performance or minimize the costs. Depending on
your company’s customerbase, you may either want to pay for a global CDN
or a local one. If you’re a global company, a global CDN makes sense. But if
you’re present only in a couple of countries, say the U.S.A., Japan and France,
it doesn’t make sense to pay for a global CDN. It’s probably cheaper to pay for
a North-American CDN and a couple of strategically placed static file servers
in Japan and France to cover the rest of your customer base. Without this
daemon, this is rather hard to set up. With it however, it becomes child’s play:
all you have to do, is configure multiple destinations. That’s all there is to it.
It is then still up to you how you use these files, though. To decide from which
server you will let your visitors download the files, you could look at the IP, or
if your visitors must register, at the country they’ve set in their profile. This
also allows for event-driven server allocation. For example if a big event is being
hosted in Paris, you could temporarily hire another server in Paris to ensure low
latency and high throughput.

Other use cases

• Back-up tool

• Transcoding server

34

• Key component in creating your own CDN

• Key component in a file synchronization tool for consumers

11.2 Configuration file design

Since the configuration file is the interface and I had a good idea of the features
I wanted to support, I started by writing a configuration file. That might be
unorthodox, but in the end, this is the most important part of the daemon. If
it’s too hard to configure, nobody will use it. If it’s easy to use, more people
will be inclined to give it a try.

Judge for yourself how easy it is by looking at listing 3 on page 37. Beneath the
config root node, there are 3 child nodes, each for one of the 3 major sections:

1. sources: indicate each data source, in which new, modified and deleted
files will be detected recursively. Each source has a name (that we will
reference later in the configuration file) and of course a scanPath, which
defines the root directory within which new/modified/deleted files will
be detected. It can also optionally have the documentRoot and basePath
attributes, which may be necessary for some processors that perform magic
with URLs.

2. servers: provide the settings for all servers that will be used in this
configuration. Each server has a name and a transporter that it should
use. The child nodes of the server node are the settings that are passed
to that transporter.

3. rules: this is the heart of the configuration file, since this is what deter-
mines what goes where. Each rule is associated with a source (via the for
attribute), must have a label attribute and can consist (but doesn’t have
to!) of three parts:

(a) filter: can contain paths, extensions, ignoredDirs, pattern and
size child nodes. The text values of these nodes will be used to
filter the files that have been created, modified or deleted within the
source to which this rule applies. If it’s a match, then the rule will be
applied (and therefor the processor chain and destination associated
with it). Otherwise, this rule is ignored for that file. See the filter
module (section 11.3.1) explanation for details.

(b) processorChain: accepts any number of processor nodes through
which you reference (via the name attribute) the procesor module and
the specific processor class within that processor module that you’d
like to use. They’ll be chained in the order you specify here.

(c) destinations: accepts any number of destination nodes through
which you specify all servers to which the file should be transported.
Each destination node must have a server attribute and can have
a path attribute. The path attribute sets a parent path inside which
the files will be transported.

35

Reading the above should make less sense than simply reading the configuration
file. If that’s the case for you too, then I succeeded.

11.3 Python modules

All modules have been written with reusability in mind: none of them make
assumptions about the daemon itself and are therefor reusable in other Python
applications.

11.3.1 filter.py

This module provides the Filter class. Through this class, you can check if
a given file path matches a set of conditions. This class is used to determine
which processors should be applied to a given file and to which CDN it should
be synced.

This class has just 2 methods: set conditions() and matches(). There are 5
different conditions you can set. The last two should be used with care, because
they are a lot slower than the first three. Especially the last one can be very
slow, because it must access the file system.
If there are several valid options within a single condition, a match with any of
them is sufficient (OR). Finally, all conditions must be satisfied (AND) before
a given file path will result in a positive match.
The five conditions are:

1. paths: a list of paths (separated by colons) in which the file can reside

2. extensions: a list of extensions (separated by colons) the file can have

3. ignoredDirs: a list of directories (separated by colons) that should be
ignored, meaning that if the file is inside one of those directories, Filter
will mark this as a negative match – this is useful to ignore data in typical
CVS and .svn directories

4. pattern: a regular expression the file path must match

5. size

(a) conditionType: either minimum or maximum

(b) treshold: the treshold in bytes

This module is fully unit-tested and is therefor guaranteed to work flawlessly.

36

Listing 3: Sample configuration file.
<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<con f ig >

<!−− Sources −−>
<sources>

<source name=”drupal ” scanPath=”/htdocs / drupal ” documentRoot=/htdocs basePath=/drupal / />
<source name=”downloads” scanPath=”/Users /wimleers /Downloads” />

</sources>

<!−− Serve r s −−>
<s e rve r s >

<s e r v e r name=”o r i g i n pu l l cdn” t r an spo r t e r=”syml ink or copy”>
<l o ca t i on >/htdocs / drupal / s t a t i c f i l e s </lo ca t i on >
<ur l>http ://mydomain . mycdn . com/ s t a t i c f i l e s </ur l>

</server >
<s e r v e r name=”f tp push cdn” t r an spo r t e r=”f tp ” maxConnections=”5”>

<host>l o c a l ho s t </host>
<username>daemontest</username>
<password>daemontest</password>
<ur l>http :// l o c a l h o s t /daemontest/</ur l>

</server >
</se rve r s >

<!−− Rules −−>
<ru l e s >

<r u l e f o r=”drupal ” l a b e l=”CSS , JS , images and Flash”>
< f i l t e r >

<paths>modules : misc</paths>
<extens ions >i c o : j s : c s s : g i f : png : jpg : jpeg : svg : swf</extens ions >
<i gnoredDirs>CVS : . svn</ignoredDirs>

</ f i l t e r >
<processorChain>

<proc e s s o r name=”image opt imizer . KeepFilename” />
<proc e s s o r name=”yui compressor . YUICompressor” />
<proc e s s o r name=l ink upda t e r . CSSURLUpdater />
<proc e s s o r name=”un ique f i l ename . Mtime” />

</processorChain>
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”o r i g i n pu l l cdn” />
<de s t i n a t i on s e r v e r=”f tp push cdn” path=” s t a t i c ” />

</de s t i na t i on s >
</ru le>

<r u l e f o r=”drupal ” l a b e l=”Videos”>
< f i l t e r >

<paths>modules : misc</paths>
<extens ions >f l v :mov : av i :wmv</extens ions >
<i gnoredDirs>CVS : . svn</ignoredDirs>
<s i z e condit ionType=”minimum”>1000000</ s i z e >

</ f i l t e r >
<processorChain>

<proc e s s o r name=”un ique f i l ename .MD5” />
</processorChain>
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”f tp push cdn” path=”v ideos ” />
</de s t i na t i on s >

</ru le>

<r u l e f o r=”downloads” l a b e l=”Mirror”>
< f i l t e r >

<extens ions >mov : avi </extens ions >
</ f i l t e r >
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”o r i g i n pu l l cdn” path=”mirror ” />
<de s t i n a t i on s e r v e r=”f tp push cdn” path=”mirror ” />

</de s t i na t i on s >
</ru le>

</ru l e s >
</con f ig >

37

11.3.2 pathscanner.py

As is to be expected, this module provides the PathScanner class, which scans
paths and stores them in a SQLite [54] database. You can use PathScanner to
detect changes in a directory structure. For efficiency, only creations, deletions
and modifications are detected, not moves. This class is used to scan the file
system for changes when no supported filesystem monitor is installed on the
current operating system. It is also used for persistent storage: when the daemon
has been stopped, the database built and maintained through/by this class is
used as a reference, to detect changes that have happened before it was started
again.

The database schema is very simple: (path, filename, mtime). Directories are
also stored; in that case, path is the path of the parent directory, filename is
the directory name and mtime is set to -1. Modified files are detected by looking
comparing the current mtime with the value stored in the mtime column.

Changes to the database are committed in batches, because changes in the
filesystem typically occur in batches as well. If every change would be committed
separately, the concurrency level would rise unnecessarily. By default, every
batch of 50 changes are committed.

This class provides you with 8 methods:

• initial scan() to build the initial database – works recursively

• scan() to get the changes – doesn’t work recursively

• scan tree() (uses scan()) to get the changes in an entire directory struc-
ture – obviously works recursively

• purge path() to purge all the metadata for a path from the database

• add files(), update files(), remove files() to add/update/remove
files manually (useful when your application has more/faster knowledge
of changes)

This module doesn’t have any tests yet, because it requires a lot of mock func-
tions to simulate system calls. It’s been tested manually thoroughly though.

11.3.3 fsmonitor.py

This time around, there’s more to it than it seems. fsmonitor.py provides
FSMonitor, a base class from which subclasses derive. fsmonitor inotify.py
has the FSMonitorInotify class, fsmonitor fsevents.py has FSMonitorFSEvents
and fsmonitor polling.py has FSMonitorPolling.
Put these together, and you have a single, simple to use abstraction to use each
operating system’s file system monitor:

38

• Uses inotify [49] on Linux (kernel 2.6.13 and higher)

• Uses FSEvents [51, 52] on Mac OS X (10.5 and higher)

• Falls back to polling when neither one is present

Windows support is possible, but hasn’t been implemented yet due to time
constraints.

Implementation obstacles

To make this class work consistently, less critical features that are only avail-
able for specific file system monitors are abstracted away. And other features
are emulated. It comes down to the fact that FSMonitor’s API is very sim-
ple to use and only supports 5 different events: CREATED, MODIFIED, DELETED,
MONITORED DIR MOVED and DROPPED EVENTS. The last 2 events are only triggered
for inotify and FSEvents.
A persistent mode is also supported, in which all metadata is stored in a
database. This allows you to even track changes when your program wasn’t
running.

As you can see, only 3 “real” events of interest are supported: the most common
ones. This is because not every API supports all features of the other APIs.
inotify is the most complete in this regard: it supports a boatload of different
events, on a file-level. But it only provides realtime events: it doesn’t maintain
a complete history of events. And that’s understandable: it’s impossible to
maintain a history of every file system event. Over time, there wouldn’t be any
space left to store actual data.
FSEvents on the other hand, works on the directory-level, so you have to main-
tain your own directory tree state to detect created, modified and deleted files.
It only triggers a “a change has occurred in this directory” event. This is why
for example there is no “file moved” event: it’d be too resource-intensive to
detect that, or at the very least it wouldn’t scale. On the plus side, FSEvents
maintains a complete history of events.

Implementations that don’t support file-level events (FSEvents and polling) are
persistent by design. Because the directory tree state must be maintained to
be able to trigger the correct events, PathScanner (see section 11.3.2) is used
for storage. They use PathScanner’s (add|update|remove) files() functions
to keep the database up-to-date. And because the entire directory tree state is
always stored, you can compare the current directory tree state with the stored
one to detect changes, either as they occur (by being notified of changes on
the directory level) or as they have occurred (by scanning the directory tree
manually).

For the persistent mode, we could take advantage of FSEvents’ ability to look
back in time. However, again due to time constraints, the same approach is used
for every implementation: a manual scanning procedure – using PathScanner –
is started after the file system monitor starts listening for new events on a given
path. That way, no new events are missed. This works equally well as using
FSEvents’ special support for this: it’s just slower. But it’s sufficient for now.

39

11.3.4 persistent queue.py and persistent list.py

In order to provide data persistency , I wrote the PersistentQueue and PersistentList
classes. As their names indicate, these provide you with a persistent queue and
a persistent list. They use again an SQLite database for persistent storage. For
each instance you create, you must choose the table name and you can option-
ally choose which database file to write to. This allows you to group persistent
datastructures in a logical manner (i.e. related persistent datastructures can be
stored in the same database file, thereby also making it portable and easy to
backup).

To prevent excessive file system access due to an overreliance on SQLite, I also
added in-memory caching. To ensure low resource consumption, only the first
X items in PersistentQueue are cached in-memory (a minimum and maximum
treshold can be configured) , but for PersistentList there is no such restric-
tion: it’s cached in-memory in its entirety. It’s not designed for large datasets,
but PersistentQeueue is.

The first question to arise is: “Why use SQLite in favor of Python’s built-in
shelve module?” Well, the answer is simple: aside of the benefit of the ability
to have all persistent data in a single file, it must also scale to tens of thousands
or even millions of files. shelve isn’t scalable because its data is loaded into
memory in its entirety. This could easily result in hundreds of megabytes of
memory usage. Such excessive memory usage should be avoided at all costs
when the target environment is a (web) server.

Your next question would probably be: “How can you be sure the SQLite
database won’t get corrupt?” The answer is: we can’t. But the same applies to
Python’s shelve module. However, the aforementioned advantages of SQLite
give plenty of advantages over shelve. Plus, SQLite is thoroughly tested, even
against corruption [55]. It’s also used for very large datasets and by countless
companies. So it’s the best bet you can make.

Finally, you’d probably ask “Why not use MySQL or PostgreSQL or . . . ?”.
Again the answer is brief: because SQLite requires no additional setup because
it is serverless, as opposed to MySQL and PostgreSQL.

Both modules are fully unit-tested and are therefor guaranteed to work flaw-
lessly.

11.3.5 Processors

processor.py

This module provides several classes: Processor, ProcessorChain and ProcessorChainFactory.

Processor is a base class for processors, which are designed to be easy to write
yourself. Processors receive an input file, do something with it and return the

40

Listing 4: YUICompressor Processor class.
c l a s s YUICompressor (Proces sor) :

””” compresses . c s s and . j s f i l e s with YUI Compressor ”””

v a l i d e x t e n s i o n s = (” . c s s ” , ” . j s ”)

de f run (s e l f) :
We don ’ t rename the f i l e , so we can use the d e f au l t output f i l e .

Remove the output f i l e i f i t a l r eady ex i s t s , o therwi se YUI
Compressor w i l l f a i l .
i f os . path . e x i s t s (s e l f . o u t p u t f i l e) :

os . remove (s e l f . o u t p u t f i l e)

Run YUI Compressor on the f i l e .
yu icompressor path = os . path . j o i n (s e l f . p roce s so r s path , ” yuicompressor . j a r ”)
args = (yuicompressor path , s e l f . i n p u t f i l e , s e l f . o u t p u t f i l e)
(stdout , s t d e r r) = s e l f . run command (” java −j a r %s %s −o %s” % args)

Raise an except ion i f an e r r o r occurred .
i f not s t d e r r == ”” :

r a i s e Proces so rError (s t d e r r)

re turn s e l f . o u t p u t f i l e

output file. The Processor class takes a lot of the small annoying tasks on its
shoulders, such as checking if the file is actually a file this processor can process,
calculating the default output file and a simple abstraction around an otherwise
multi-line construction to run a command.
Upon completion, a callback will be called. Another callback is called in case of
an error.
An example can found in listing 4. For details, please consult the daemon’s
documentation.

Processors are allowed to make any change they want to the file’s contents.
They are also allowed to change the base name of the input file, but they’re not
allowed to change its path. This measure was taken to reduce the amount of
data that will need to be stored to know which file is stored where exactly. This
is enforced by convention, because in Python it’s impossible to truly enforce
anything. If you do change the path, the file will sync just fine, but it will be
impossible to delete the old version of a modified file, unless it results in the
exact same path and base name each time it runs through the processor chain.

The Processor class accepts a parent logger which subclasses can optionally
use to perform logging.

Then there is the ProcessorChain class, which receives a list of processors
and then runs them as a chain: the output file of processor 1 is the input
file of processor 2, and so on. ProcessorChains run in their own threads.
ProcessorChain also supports logging and accepts a parent logger.

There are two special exceptions Processor subclasses can throw:

1. RequestToRequeueException: when raised, the ProcessorChain will stop
processing this file and will pretend the processing failed. This effectively

41

means that the file will be reprocesse later. A sample use case is the
CSSURLUpdater class11.3.5, in which the URLs of a CSS file must be up-
dated to point to the corresponding URLs of the files on the CDN. But
if not all of these files have been synced, that’s impossible. So it must be
retried later.

2. DocumentRootAndBasePathRequiredException: when raised, the ProcessorChain
will stop applying the processor that raised this exception to this file, be-
cause the source to which this file belongs, did not have these attributes
set and therefor it cannot be applied.

Finally, ProcessorChainFactory: this is simply a factory that generates ProcessorChain
objects, with some parameters already filled out.

filename.py

This processor module provides two procesor classes: SpacesToUnderscores
and SpacesToDashes. They respectively replace spaces with underscores and
spaces with dashes in the base name of the file.

This one is not very useful, but it’s a good simple example.

unique filename.py

Also in this processor module, two processor classes are provided: Mtime and
MD5. MTime appends the mtime (last modification time) as a UNIX timestamp
to the file’s base name (preceded by an underscore). MD5 does the same, but
instead of the mtime, it appends the MD5 hash of the file to the file’s base name.

This processor is useful if you want to ensure that files have unique filenames,
so that they can be given far future Expires headers (see section 7 on page 8).

image optimizer.py

This processor module is inspired by [58]. It optimizes images losslessly, i.e. it
reduces the filesize without touch the quality. The research necessary wasn’t
performed by me, but by Stoyan Stefanov, a Yahoo! web developer working for
the Exceptional Performance team, and was thoroughly laid out in a series of
blog posts [59, 60, 61, 62] at the Yahoo! user interface blog.

For GIF files, a conversion to PNG8 is performed using ImageMagick’s [63]
convert. PNG8 offers lossless image quality, as does GIF, but results in a
smaller file size. PNG8 is also supported in all browsers, including IE6. It’s the
alpha channels of truecolor PNG (PNG24 & PNG32) that are not supported in
IE6.

42

PNG files are stored in so-called “chunks” and not all of these are required to
display the image – in fact, most of them are not used at all. pngcrush [64] is
used to strip all the unneeded chunks. pngcrush is also applied to the PNG8
files that are generated by the previous step. I decided not to use the brute
force method, which tries over a hundred different methods for optimization,
but just the 10 most common ones. The brute force method would result in 30
seconds of processing versus less than a second otherwise.

JPEG files can be optimized in three complementary ways: stripping metadata,
optimizing the Huffman tables and making them progressive. There are two
variations to store a JPEG file: baseline and progresive. A baseline JPEG file is
stored as one top-to-bottom scan, whereas a progressive JPEG file is stored as
a series of scans, with each scan gradually improving the quality of the overall
image. Stoyan Stefanov’s tests [62] have pointed out that you’ve got a 75%
chance that the JPEG file is best saved as baseline when it’s smaller than 10
KB. For JPEG files larger than 10 KB, it’s 94% likely that progressive JPEG
will result in a better compression ratio. That’s why the third optimization
(making JPEG files progressive) is only applied when the file is larger than 10
KB. All these optimizations are applied using jpegtran [65].

Finally, animated GIF files can be optimized by stripping the pixels from each
frame that don’t change from the previous to the next frame. I use gifsicle [66]
to achieve that.

One nuance you should know about: stripping metadata may also remove the
copyright information, which may have legal consequences. So you better don’t
strip metadata when you’ve bought some of the photos you’re hosting, which
may be the case for e.g. a newspaper web site.

Now that you know how the optimizations are done, here is the overview of all
processor classes that this processor module provides:

1. Max optimizes image files losslessly (GIF, PNG, JPEG, animated GIF)

2. KeepMetadata same as Max, but keeps JPEG metadata

3. KeepFilename same as Max, but keeps the original filename (no GIF op-
timization)

4. KeepMetadataAndFilename same as Max, but keeps JPEG metadata and
the original filename (no GIF optimization)

link updater.py

Thanks to this processor module, it is possible to serve CSS files from a CDN
while updating the URLs in the CSS file to reference the new URLs of these
files, that is, the URLs of the synced files. It provides a sole processor class:
CSSURLUpdater. This processor class should only be used when either of these
conditions are true:

43

• The base path of the URLs changes and relative URLs that are relative
to the document root.
For example, http://example.com/static/css/style.css becomes http://cdn.com/example.com/static/css/style.css
and its referenced file http://example.com/static/images/background.png
becomes http://cdn.com/example.com/static/images/background.png
after syncing. If style.css referenced background.png through the rela-
tive URL /static/images/background.png, then it must use CSSURLUpdater.
Otherwise this relative URL would become invalid.

• The base names of the referenced files changes.
For example, http://example.com/static/css/style.css becomes http://cdn.com/example.com/static/css/style 1242440815.css
and its referenced file http://example.com/static/images/background.png
becomes http://cdn.com/static/images/background 1242440827.png
after syncing. Then it must always use CSSURLUpdater. Otherwise the
URL would become invalid, as the file’s base name has changed.

CSSURLUpdater uses the cssutils [67] Python module to parse CSS files. This
unfortunately also negatively impacts its performance, because it validates the
CSS file while tokenizing it. But as this will become open source, others will
surely improve this. A possibility is to use regular expressions instead to filter
out the URLs.

All CSSURLUpdater does is resolving relative URLs (relative to the CSS file or
relative to the document root) to absolute paths on the file system , then looking
up the corresponding URLs on the CDN and placing those instead in the CSS
file. If one of the referenced files cannot be found on the file system, this URL
remains unchanged. If one of the referenced files has not yet been synced to
the CDN, then a RequestToRequeueException exception will be raised (see
section 11.3.5 on page 40) so that another attempt will be made later, when
hopefully all referenced files have been synced.
For details, see the daemon’s documentation.

yui compressor.py

This is the processor module that could be seen in listing 4 on page 41. It
accepts CSS and JS files and runs the YUI Compressor [68] on them, which are
then compressed by stripping out all whitespace and comments. For JavaScript,
it relies on Rhino [69] to tokenize the JavaScript source, so it’s very safe: it
won’t strip out whitespace where that could potentially cause problems. Thanks
to this, it can also optimize more aggressively: it saves over 20% more than
JSMIN [70]. For CSS (which is supported since version 2.0) it uses a regular-
expression based CSS minifier.

44

Listing 5: TransporterFTP Transporter class.
c l a s s TransporterFTP (Transporter) :

name = ’FTP’
v a l i d s e t t i n g s = ImmutableSet ([” host ” , ”username ” , ”password ” , ” u r l ” , ” port ” , ”path ”])
r e q u i r e d s e t t i n g s = ImmutableSet ([” host ” , ”username ” , ”password ” , ” u r l ”])

de f i n i t (s e l f , s e t t i n g s , ca l lback , e r r o r c a l l b a c k , pa r en t l o gg e r=None) :
Transporter . i n i t (s e l f , s e t t i n g s , ca l lback , e r r o r c a l l b a c k , pa r en t l o gg e r)

F i l l out d e f a u l t s i f nece s sa ry .
c o n f i g u r e d s e t t i n g s = Set (s e l f . s e t t i n g s . keys ())
i f not ” port ” in c o n f i g u r e d s e t t i n g s :

s e l f . s e t t i n g s [” port ”] = 21
i f not ”path” in c o n f i g u r e d s e t t i n g s :

s e l f . s e t t i n g s [” path ”] = ””

Map the s e t t i n g s to the format expected by FTPStorage .
l o c a t i o n = ” f tp ://” + s e l f . s e t t i n g s [” username ”] + ” :”
l o c a t i o n += s e l f . s e t t i n g s [” password ”] + ”@” + s e l f . s e t t i n g s [” host ”]
l o c a t i o n += ”:” + s t r (s e l f . s e t t i n g s [” port ”]) + s e l f . s e t t i n g s [” path ”]
s e l f . s t o rage = FTPStorage (l o ca t i on , s e l f . s e t t i n g s [” u r l ”])
t ry :

s e l f . s t o rage . s t a r t c onn e c t i o n ()
except Exception , e :

r a i s e ConnectionError (e)

11.3.6 Transporters

transporter.py

Each transporter is a persistent connection to a server via a certain protocol
(FTP, SCP, SSH, or custom protocols such as Amazon S3, any protocol really)
that is running in its own thread. It allows you to queue files to be synced (save
or delete) to the server.
Transporter is a base class for transporters, which are in turn very (very!)
thin wrappers around custom Django storage systems [72]. If you need sup-
port for another storage system, you should write a custom Django storage
system first. Transporters’ settings are automatically validated in the construc-
tor. Also in the constructor, an attempt is made to set up a connection to their
target server. When that fails, an exception (ConnectionError) is raised. Files
can be queued for synchronization through the sync file(src, dst, action,
callback, error callback) method.
Upon completion, the callback function will be called. The error callback
function is called in case of an error.
Transporter also supports logging and accepts a parent logger.
A sample transporter can found in listing 5. For details, please consult the
daemon’s documentation.

Now, why the dependency on Django’s Storage class? For three reasons:

1. Since Django is a pretty big open source project with many developers
and is powering many web sites, it’s fair to assume that the API is stable
and solid. Reinventing the wheel is meaningless and will just introduce
more bugs.

45

2. Because the daemon relies on (unmodified!) Django code, it can benefit
from bugfixes/features applied to Django’s code and can use custom stor-
age systems written for Django. The opposite is also true: changes made
by contributors to the daemon (and initially myself) can be contributed
back to Django and its contributed custom storage systems.

3. django-storages [73] is a collection of custom storage systems, which in-
cludes these classes:

(a) DatabaseStorage: store files in the database (any database that
Django supports (MySQL, PostgreSQL, SQLite and Oracle)

(b) MogileFSStorage; MogileFS [81] is an open source distributed file
system

(c) CouchDBStorage; Apache CouchDB [82] is a distributed, fault-tolerant
and schema-free document-oriented database accessible via a REST-
ful HTTP/JSON API.

(d) S3Storage; uses the official Amazon S3 Python module

(e) S3BotoStorage; uses the boto [80] module to access Amazon S3 [78]
and Amazon CloudFront [79]

(f) FTPStorage; uses the ftplib Python module [77]

For the last two, transporters are available. The first three are not so widely
used and thus not yet implemented, although it’d be very easy to support them,
exactly because all that is necessary, is to write thin wrappers. The fourth is not
very meaningful to use, since the fifth is better (better maintained and better
performing).

So I clearly managed to make a big shortcut (for simplicity of the argument,
I’m waving away the fact that I had to get this to work outside of Django itself)
to achieve my goal: support CDNs that support FTP or origin pulling (see
section 8 on page 9), as well as the Amazon S3 and CloudFront CDNs.

However, supporting origin pull was trickier than would seem at first. Normally,
you just rewrite your URLs and be done with it. However, I wanted to support
processing files prior to syncing them to the CDN. And I want to keep following
the “don’t touch the original file” rule. With push, that is no problem, you just
process the file, store the output file in a temporary directory, push the file and
delete it afterwards. But what about pull?
I had to be creative here. Since files must remain available for origin pull
(in case the CDN wants/needs to update its copy), all files must be copied to
another publicly accessible path in the web site. But what about files that are
not modified? Or have just changed filenames (for unique URLs)? Copying
these means storing the exact same data twice. The answer is fortunately very
simple: symlinks. Although available only on UNIX, it’s very much worth it:
it reduces redundant data storage significantly. This was then implemented in
a new custom storage system: SymlinkOrCopyStorage, which copies modified
files and symlinks unmodified ones.

In total, I’ve contributed three patches to django-storages:

46

1. FTPStorage: saving large files + more robust exists()[74]

(a) It enables the saving of large files by no longer reading all the chunks
of the file in a single string, instead it uses ftplib.storbinary()
directly with a file pointer, which then handles the writing in chunks
automatically.

(b) It makes exists() more reliable: it’s been tested with 3 different
FTP servers and so far it works without problems with the following
FTP servers, whereas it didnt’ work with any of them before:

i. PureFTPd
ii. Xlight FTP Server 3.2 (used by SimpleCDN)
iii. Pure-FTPd (used by Rambla)

This greatly improves the number of use cases where you can use the
FTPStorage custom storage system.

2. S3BotoStorage: set Content-Type header, ACL fixed, use HTTP and
disable query auth by default [75]

(a) The Content-Type header is set automatically via guessing based on
the extension, this is done through mimetypes.guesstype. Right now,
no Content-Type is set, and therefor the default binary mimetype is
set: application/octet- stream. This causes browsers to download
files instead of displaying them.

(b) The ACL now actually gets applied properly to the bucket and to
each file that is saved to the bucket.

(c) Currently, URLs are generated with query-based authentication (mean-
ing you’ll get ridiculously long URLs) and HTTPS is used instead of
HTTP, thereby preventing browsers from caching files. I’ve disabled
query authentication and HTTPS, as this is the most common use
case for serving files. This probably should be configurable, but that
can be done in a revised patch or a follow-up patch.

(d) It allows you to set custom headers through the constructor (which
I really needed for my daemon).

This greatly improves the usability of the S3BotoStorage custom storage
system in its most common use case: as a CDN for publicly accessible
files.

3. SymlinkOrCopyStorage: new custom storage system [76]

The maintainer was very receptive to these patches and replied a mere 23 min-
utes after I contacted him (via Twitter):

davidbgk@wimleers Impressive patches, I’ll merge your work asap.
Thanks for contributing! Interesing bachelor thesis :)

47

The patches were submitted on May 14, 2009. The first and third patch were
committed on May 17, 2009. The second patch needs a bit more work (more
configurable, less hard coded, which it already was though). The fact that an-
other new storage system was also added (Apache CouchDB) seems to indicate
that I made a good choice: this project seems to be pretty active and is gaining
attention.

transporter ftp.py

Provides the TransporterFTP class, which is a thin wrapper around FTPStorage,
with the aforementioned patch applied.

transporter s3.py

Provides the TransporterS3 class, which is a thin wrapper around S3BotoStorage,
with the aforementioned patch applied.

transporter cf.py

Provides the TransporterCF class, which is not a thin wrapper around S3BotoStorage,
but around TransporterS3. In fact, it just implementes the alter url()
method to alter the Amazon S3 URL to an Amazon CloudFront URL .

It also provides the create distribution() function to create a distribution
for a given origin domain (a domain for a specific Amazon S3 bucket). Please
consult the daemon’s documentation for details.

transporter symlink or copy.py

Provides the TransporterSymlinkOrCopy class, which is a thin wrapper around
SymlinkOrCopyStorage, which is a new custom storage system I contributed
to django-storages, as mentioned before.

11.3.7 config.py

This module contains just one class: Config. Config can load a configuration
file (parse the XML) and validate it. Validation doesn’t happen through an
XML schema, but through “manual” validation. The filter node is validated
through the Filter class to ensure it is error free. All references (to sources
and servers) are also validated. Its validation routines are pretty thorough, but
by no means perfect.
Config also supports logging and accepts a parent logger.

This module should be unit tested, but isn’t – yet.

48

11.3.8 daemon thread runner.py

I needed to be able to run the application as a daemon. Great, but then how do
you stop it? Through signals. That’s also how for example the Apache HTTP
server does it [83]. To send a signal, you need to know the process’ pid (process
id). So the pid must be stored in a file somewhere.

This module contains the DaemonThreadRunner class, which accepts an object
and the name of the file that should contain the pid. The object should be
a subclass of Python’s threading.Thread class. As soon as you start() the
DaemonThreadRunner object, the pid will be written to the specified pid file
name, the object will be marked as a daemon thread and started. While it’s
running, the pid is written to the pid file every 60 seconds.

When an interrupt is caught (SIGINT for interruption, SIGTSTP for suspension
and SIGTERM for termination), the thread (of the object that was passed) is
stopped and DaemonThreadRunner waits for the thread to join and then deletes
the file.

This module is not unit tested, because it makes very little sense to do so (there’s
not much code). Having used it hundreds of times, it didn’t fail once, so it’s
reliable enough.

11.4 Putting it all together: arbitrator.py

11.4.1 The big picture

The arbitrator is what links together all Python modules I’ve described in the
previous section. Here’s a hierarchical overview, so you get a better understand-
ing of The big picture:

49

Figure 15: The big picture

Clearly, Arbitrator is what links everything together: it controls the 5 com-
ponents: Config, FSMonitor, Filter, Processor and Transporter. There
are three subclasses of FSMonitor to take advantage of the platform’s built-
in file system monitor. Processor must be subclassed for every processor.
Transporter must be subclassed for each protocol.

Now that you have an insight in the big picture, let’s see how exactly Arbitrator
controls all components, and what happens before the main function.

11.4.2 The flow

First, an Arbitrator object is created and its constructor does the following:

• create a logger

50

• parse the configuration file

• verify the existence of all processors and transporters that are referenced
from the configuration file

• connect to each server (as defined in the configuration file) to ensure it’s
working

Then, the Arbitrator object is passed to a DaemonThreadRunner object, which
then runs the arbitrator in such a way that it can be stopped through signals.
The arbitrator is then started. The following happens:

1. setup

(a) create transporter pools (cfr. worker thread pools) for each server.
These pools remain empty because they’re filled

(b) collect all metadata for each rule

(c) initialize all datastructures for the pipeline (queues, persistent queues
and persistent lists)

(d) move files from the ’files in pipeline’ persistent list to the ’pipeline’
persistent queue

(e) move files from the ’failed files’ persistent list to the ’pipeline’ per-
sistent queue

(f) create a database connection to the ’synced files’ database

(g) initialize the file system monitor (FSMonitor)

2. run

(a) start the file system monitor

(b) start the processing loop and keep it running until the thread is being
stopped

i. process the discover queue
ii. process the pipeline queue
iii. process the filter queue
iv. process the process queue
v. process the transport queues (1 per server)

vi. process the db queue
vii. process the retry queue
viii. allow retry (move files from the ’failed files’ persistent list to the

’pipeline’ persistent queue)
ix. sleep 0.2 seconds

(c) stop the file system monitor

(d) process the discover queue once more to sync the final batch of files
to the persistent pipeline queue

(e) stop all transporters

51

(f) log some statistics

That’s roughly the logic of the daemon. It should already make sense to you,
but you’re probably wondering what all the queues are for. And how they’re
being filled and emptied. So now it’s time to learn about the daemon’s pipeline.

11.4.3 Pipeline design pattern

This design pattern, which is also sometimes called “Filters and Pipes” [84, 85,
86, 87], is slightly underdocumented, but it’s still a very useful design pattern.
Its premise is to deliver an architecture to divide a large processing task into
smaller, sequential steps (“Filters”) that can be performed independently – and
therefor in parallel – which are finally connected via Pipes. The output of one
step is the input of the next.

For all that follows in this subsection, you may want to look at figure 16 while
reading. Note that this figure doesn’t contain every detail: it is intended to
help you gain some insight into how the daemon works, not how every detail is
implemented.

In my case, files are discovered and are then put into the pipeline queue. When
they actually move into the pipeline (at which point they’re added to the ’files
in pipeline’ persistent list), they start by going into the filter queue, after being
filtered they go into the process queue (possibly more than once), after being
processed to the transport queue (again possibly more than once), after being
transported to the db queue, after being stored in the database, they’re removed
from the ’files in pipeline’ persistent list and we’re done for this file. Repeat for
every discovered file. This is the core logic of the daemon.

So many queues are used because there are so many stages in the pipeline.
There’s a queue for each stage in the pipeline, plus some additional ones because
the persistent datastructures use the pysqlite module, which only allows you to
access the database from the same thread as the connection was created in.
Because I (have to) work with callbacks, the calling thread may be different
from the creating thread, and therefor there are several queues that exist solely
for exchanging data between threads.
There is one persistent queue and two persistent lists. The persistent queue is
the pipeline queue, which contains all files that are queued to be sent through
the pipeline. The first persistent list is ’files in pipeline’. It is used to ensure
files still get processed if the daemon was killed (or crashed) while they were in
the pipeline. The second persistent list is ’failed files’ and contains all files for
which either a processor in the processor chain or a transporter failed.
When the daemon is restarted, the contents of the ’files in pipeline’ and ’failed
files’ lists are pushed into the pipeline queue, after which they are erased.

Queues are either filled through the Arbitrator (because it moves data from
one queue to the next):

52

Figure 16: Flowchart of the daemon’s pipeline.

53

• The pipeline queue is filled by the “process discover queue” method, which
always syncs all files in the discover queue to the pipeline queue.

• The filter queue is filled by the “process pipeline queue” method, which
processes up to 20 files (this is configurable) in one run, or until there are
100 files in the pipeline (this is also configurable), whichever limit is hit
first.

• The process queue is filled by the “process filter queue” method, which
processes up to 20 files in one run.

or through callbacks (in case data gets processed in a separate thread):

• The discover queue is filled through FSMonitor’s callback (which gets
called for every discovered file).

• The transport queue is filled through a ProcessorChain’s callback or di-
rectly from the “process filter queue” method (if the rule has no processor
chain associated with it). To know when a file has been synced to all its
destinations, the ’remaining transporters’ list gets a new key (the concate-
nation of the input file, the event and the string representation of the rule)
and the value of that key is a list of all servers to which this file will be
synced.

• The db queue is filled through a Transporter’s callback. Each time this
callback fires, it also carries information on which server the file has just
been transported to. This server is then removed from the ’remaining
transporters’ list for this file. When no servers are left in this list, the
sync is complete and the file can be removed from the ’files in pipeline’
persistent list.

Because the ProcessorChain and Transporter callbacks only carry information
about the file they’ve just been operating on, I had to find an elegant method
to transfer the additional metadata for this file, which is necessary to let the
file continue through the pipeline. I’ve found this in the form of currying [88].
Currying is dynamically creating a new function that calls another function,
but with some arguments already filled out. An example:

curried callback = curry(self . processor chain callback , event=event, rule=rule)

The function self.processor chain callback accepts the event and rule
arguments, but the ProcessorChain class has no way of accepting “additional
data” arguments. So instead of rewriting ProcessorChain (and the exact same
thing applies to Transporter), I simply create a curried callback, that will
automatically fill out the arguments that the ProcessorChain callback by itself
could never fill out.

Each of the “process X queue” methods acquires Arbitrator’s lock before
accessing any of the queues. Before a file is removed from the pipeline queue,

54

it is added to the ’files in pipeline’ persistent list (this is possible thanks to
PersistentQueue’s peek() method), and then it is removed from the pipeline
queue. This implies that at no time after the file has been added to the pipeline
queue, it can be lost. The worst case scenario is that the daemon crashes
between adding the file to the ’files in pipeline’ persistent list and removing it
from the pipeline queue. Then it’ll end up twice in the queue. But the second
sync will just overwrite the first one, so all that is lost, is CPU time.

The “allow retry” method allows failed files (in the ’failed files’ persistent list) to
be retried, by adding them back to the pipeline queue. This happens whenever
the pipeline queue is getting empty, or every 30 seconds. This ensures processors
that use the RequestToRequeueException exception can retry.

The only truly weak link is unavoidable: if the daemon crashes somewhere
between having performed the callback from FSMonitor, adding that file to the
discover queue and syncing the file from the discover queue to the pipeline queue
(which is necessary due to the thread locality restriction of pysqlite).

11.5 Performance tests

I’ve performed fairly extensive tests in both Mac OS X and Linux. The appli-
cation behaved identically on both platforms, despite the fact that different file
system monitors are being used in the background. The rest of this problemless
cross-platform functioning is thanks to Python.

All tests were performed on the local network, i.e. with a FTP server running on
the localhost. Very small scale tests have been performed with the Amazon S3
and CloudFront transporters, and since they worked, the results should apply
to those as well. It doesn’t and shouldn’t matter which transporter is being
used.

At all times, the memory usage remained below 17 MB on Mac OS X and
below 7 MB on Linux (unless the update linker processor module was used, in
which case it leaks memory like a madman – the cssutils Python module is to
blame). A backlag of more than 10,000 files was no problem. Synchronizing 10
GB of files was no problem. I also tried alot of variations in the configuration
and all of them worked (well, sometimes it needed s.ome bugfixing of course).
Further testing should happen in real-world environments. Even tests in which
I forced processors or transporters to crash were completed succesfully: no files
were lost and they would be synced again after restarting the daemon.

11.6 Possible further optimizations

• Files should be moved from the discover queue to the pipeline queue in
a separate thread, to minimize the risk of losing files due to a crashed
application before files are moved to the pipeline queue. In fact, the
discover queue could be eliminitated altogether thanks to this.

55

• Track progress of transporters and allow them to be be stopped while still
syncing a file.

• Make processors more error resistent by allowing them to check the en-
vironment, so they can ensure 3rd party applications, such as YUI Com-
pressor or jpegtran are installed.

• Figure out an automated way of ensuring the correct operating of proces-
sors, since they are most likely the cause of problems thanks to the fact
that users can easily write their own Processors.

• Automatically copy the synced files DB every X seconds, to prevent long
delays for read-only clients. This will only matter on sites where uploads
happen more than once per second or so.

• Reorganize code: make a proper packaged structure.

• Make the code redistributable. As a Python egg, or maybe even as binaries
for each supported platform.

• Automatically stop transporters after a period of idle time.

11.7 Desired future features

• Polling the daemon for its current status (number of files in the queue,
files in the pipeline, processors running, transporters running, etc.)

• Support for Munin/Nagios for monitoring (strongly related to the previous
feature)

• Ability to limit network usage by more than just the number of connec-
tions: also by throughput.

• Ability to limit CPU usage by more than just the number of simultaneous
processors.

• Store characteristics of the operations, such as TTS (Time-To-Sync), so
that you can analyze this data to configure the daemon to better suit your
needs.

• Allow server-specific processor chains (i.e. run the processor chain once
for each server the file will be synced to). This allows you to have CSS
files that contain URLs rewritten to that specific server. Right now, you
can only have one processor chain and therefor the CSS file will always
reference the same URLs, which may refer to another server.

• Cache the latest configuration file and compare with the new one. If
changes occurred to any of the rules, it should detect them on its own and
do the necessary resyncing.

56

12 Improving Drupal: CDN integration

It should be obvious by now that we still need a module to integrate Drupal
with a CDN, as Drupal doesn’t provide such functionality on its own – if it did,
then this bachelor thesis would be titled differently. This is the end of the long
journey towards supporting the simplest and the most complex CDN or static
file server setups one can make. Fortunately, this is all fairly trivial, except for
maybe the necessary Drupal core patch.

12.1 Goals

The daemon I wrote is not necessary for Origin Pull CDNs. So this module
should support those through a simple UI. On the other hand, we must also
make it easy to use the daemon in a Drupal site. Let’s call the former basic
mode and the latter advanced mode, thereby indicating that the latter is more
complex to set up (i.e. it requires you to set up the daemon). So, let’s look at
the goals:

• shared functionality

– ability to show per-page statistics: number of files on the page, num-
ber of files served from the CDN

– status report shows if CDN integration is active and displays as an
warning if it is disabled or in debug mode (to stress the importance
of having it enabled)

• basic mode

– enter the CDN URL and it’ll be used in file URLs automatically

– ability to only use the CDN for files with certain extensions

• advanced mode

– enter the absolute path to the synced files database and then file
URLs will be looked up from there automatically

– status report: check if daemon is running, if not, display the report
as an error

– status report: number of synced files, number of files in the pipeline,
number of files waiting to enter the pipeline

– per-page statistics: show from which destination the file is being
served

– per-page statistics: show the total and average time spent on query-
ing the synces files database

– ability to decide from which destination a file will be served (if multi-
ple destinations for a file are available) based on user properties (user
role, language, location) or whatever other property

57

12.2 Drupal core patch

I had the chance to speak to Andrew “drewish” Morton at DrupalCon DC about
this. He is the one who managed to get his proposed Drupal File API patches
committed to the current development version of Drupal (which will become
Drupal 7). So he definitely is the person to go to for all things concerning
files in Drupal right now. I explained to him the need for a unified file URL
generation/alteration mechanism and he immediately understood and agreed.

My patch will be against Drupal 6, but the file URL generation mechanism is
identical in Drupal 7. So, my patch should be easy to port to Drupal 7.

Drupal already has one function to generate file URLs: file create url($path).
Unfortunately, this function is only designed to work for files that have been
uploaded by users or are generated by modules (e.g. transformations of images).
And now the bad news: there is no function through which the URLs for the
other files (the ones that aren’t uploaded but are shipped with Drupal core and
modules and themes) are generated. To be honest, the current method for gen-
erating these URLs is very ugly, although very simple: prepend the base path
to the relative file path. So if you want to serve the file misc/jquery.js (which
is part of Drupal core), then you would write the following code to generate an
URL for it:

$url = base path() . ’misc/jquery.js ’;

Andrew and I agreed that since eventually both kinds of files are typically served
from the same server(s), it only makes sense to generate their URLs through
one function. So the sensible thing to do was to also route the non-uploaded
files through the file create url() function to generate their URLs. And then
there would be a function that a module could implement, custom file url rewrite($path)
which would then allow file URLs to be altered.

So, I wrote a Drupal core patch exactly according to these specifications, and
it works great. However, we must fall back to the old mechanisms in case
the custom file url rewrite() function returned FALSE (meaning that the
CDN can’t or shouldn’t serve the file). But since there is a distinction be-
tween uploaded/generated files and shipping files, we must first determine which
kind of file it is. This can be done by looking at the path that was given to
file create url(): if it begins with the path of the directory that the Drupal
administrator chose to use for uploaded and generated files, then it is an upload-
ed/generated file. After this distinction has been made, the original procedures
are applied and we’re done.

12.3 Implementation

• A simple configuration UI was created using the Forms API [45]. Ad-
vanced mode cannot be started if the daemon isn’t configured properly
yet (by ensuring the synced files database exists).

58

• The per-page statistics are rendered through Drupal’s hook exit(), which
is called just before the end of each page request. It is therefor able to
render after the rest of the page is rendered, which of course implies that
all file URLs have been created, so it’s safe to calculate the statistics.

• A hook requirements() implementation was created, which allows me
to add information about the CDN integration module to Drupal’s status
report page.

• The aforementioned custom file url rewrite() function was implemented,
which rewrites the URL based on the mode. In basic mode, the CDN URL
is automatically inserted into file URLs and in advanced mode, the synces
files database is queried. This is an SQLite database, which the Drupal
6 database abstraction layer does not support. Drupal 7’s database ab-
straction layer does support SQLite, but is still in development (and will
be for at least 6 more months). Fortunately, there’s also PDO [89], which
makes this sufficiently easy.

That’s all there is to tell about this module. It’s very simple: all complexity is
now embedded in the daemon. As it should be.

12.4 Comparison with the old CDN integration module

In January 2008, I wrote the initial version of the CDN integration module. It
was for Drupal 5 instead of Drupal 6 though and it didn’t support Origin Pull
CDNs, instead, it only supported push CDNs that were accessible over FTP.
The synchronization happened from within Drupal, on each cron run. Which
means it relied on manual file system scanning (i.e. polling) to detect changes
and was prevented by design to perform concurrent syncs, since PHP cannot do
that. To top it off, it didn’t store anything in the database, but in a serialized
array, which had to be unserialized on every page to retrieve the URLs. It
should be obvious that this was significantly slower and absolutely unscalable
and definitely unusable on any real web sites out there.

It had its algorithms right though. You could consider it a very faint preview
of what the end result looks like right now.

59

12.5 Screenshots

The configuration UI

Figure 17: CDN integration module settings form.

60

Figure 18: CDN integration module basic mode settings form.

Figure 19: CDN integration module advanced mode settings form.

61

Figure 20: CDN integration module other settings form.

The status report

Figure 21: Status report (basic mode, enabled).

62

Figure 22: Status report (basic mode, debug mode).

Figure 23: Status report (disabled).

63

Figure 24: Status report (advanced mode, enabled, daemon not running).

Figure 25: Status report (advanced mode, enabled, daemon running).

64

The per-page statistics

Figure 26: Per-page statistics.

65

13 Used technologies

• Languages

– PHP

– JavaScript

– Python

– SQL

• Frameworks

– Drupal (Forms API, Batch API, menu system, Schema API, etc.)

– jQuery

– Episodes [40]

– Django’s [71] Storage class [72] and its dependencies

• APIs/libraries

– Browser.php [48]

– Google Chart API [47]

– FSEvents [51, 52] (through the Python-Objective-C bridge [53])

– inotify [49] (through the Python pyinotify [50] module)

– SQLite [54] (through the Python sqlite3 [57] module and the PHP
PDO [89] database abstraction layer)

– django-storages [73]

– cssutils [67]

• Uses the following 3rd party applications

– ImageMagick [63]

– pngcrush [64]

– jpegtran [65]

– gifsicle [66]

– YUI Compressor [68]

• Supports the following storage systems

– FTP (via django-storages, through the Python ftplib [77] module)

– Amazon S3 [78] (via django-storages, through the Python boto [80]
module)

– Amazon CloudFront [79] (via django-storages, through the Python
boto [80] module)

• Integrates with the following applications

– Apache HTTP Server

66

14 Feedback from businesses

TODO

67

15 Conclusion

TODO

68

References

[1] Design Fast Websites, Nicole Sullivan, 2008, http://www.slideshare.
net/stubbornella/designing-fast-websites-presentation

[2] We’re all guinea pigs in Google’s search experiment, Stephen Shankland,
http://news.cnet.com/8301-10784_3-9954972-7.html

[3] High Performance Web Sites, Steve Souders, 2007, O’Reilly, http://
stevesouders.com/hpws/

[4] Usage statistics for Drupal, http://drupal.org/project/usage/drupal

[5] Improving Drupal’s page loading performance, Wim
Leers, January 2008, http://wimleers.com/article/
improving-drupals-page-loading-performance

[6] Content Owners Struggling To Compare One CDN To Another, March
2008, http://blog.streamingmedia.com/the_business_of_online_
vi/2008/03/content-owners.html

[7] ,How Is CDNs Network Performance For Streaming Measured?, August
2007, http://blog.streamingmedia.com/the_business_of_online_
vi/2007/08/cdns-network-pe.html

[8] UA Profiler, Steve Souders, 2008, http://stevesouders.com/ua/

[9] Cuzillion, Steve Souders, 2008, http://stevesouders.com/cuzillion/

[10] Cuzillion, Steve Souders, 2008, http://www.stevesouders.com/blog/
2008/04/25/cuzillion/

[11] Hammerhead, Steve Souders, 2008, http://stevesouders.com/
hammerhead/

[12] Hammerhead: moving performance testing upstream, Steve Soud-
ers, September 2008, http://www.stevesouders.com/blog/2008/09/30/
hammerhead-moving-performance-testing-upstream/

[13] Firebug, http://getfirebug.com/

[14] Fasterfox, http://fasterfox.mozdev.org/

[15] YSlow, Steve Souders, 2007, http://developer.yahoo.com/yslow/

[16] Exceptional Performance, 2007, http://developer.yahoo.com/
performance/index.html

[17] Best Practices for Speeding Up Your Web Site, 2008, http://developer.
yahoo.com/performance/rules.html

[18] YSlow: Yahoo’s Problems Are Not Your Problems, Jeff Atwood, 2007,
http://www.codinghorror.com/blog/archives/000932.html

[19] YSlow 2.0 early preview in China, Yahoo! Developer Network, 2008, http:
//developer.yahoo.net/blog/archives/2008/12/yslow_20.html

69

http://www.slideshare.net/stubbornella/designing-fast-websites-presentation
http://www.slideshare.net/stubbornella/designing-fast-websites-presentation
http://news.cnet.com/8301-10784_3-9954972-7.html
http://stevesouders.com/hpws/
http://stevesouders.com/hpws/
http://drupal.org/project/usage/drupal
http://wimleers.com/article/improving-drupals-page-loading-performance
http://wimleers.com/article/improving-drupals-page-loading-performance
http://blog.streamingmedia.com/the_business_of_online_vi/2008/03/content-owners.html
http://blog.streamingmedia.com/the_business_of_online_vi/2008/03/content-owners.html
http://blog.streamingmedia.com/the_business_of_online_vi/2007/08/cdns-network-pe.html
http://blog.streamingmedia.com/the_business_of_online_vi/2007/08/cdns-network-pe.html
http://stevesouders.com/ua/
http://stevesouders.com/cuzillion/
http://www.stevesouders.com/blog/2008/04/25/cuzillion/
http://www.stevesouders.com/blog/2008/04/25/cuzillion/
http://stevesouders.com/hammerhead/
http://stevesouders.com/hammerhead/
http://www.stevesouders.com/blog/2008/09/30/hammerhead-moving-performance-testing-upstream/
http://www.stevesouders.com/blog/2008/09/30/hammerhead-moving-performance-testing-upstream/
http://getfirebug.com/
http://fasterfox.mozdev.org/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/performance/index.html
http://developer.yahoo.com/performance/index.html
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
http://www.codinghorror.com/blog/archives/000932.html
http://developer.yahoo.net/blog/archives/2008/12/yslow_20.html
http://developer.yahoo.net/blog/archives/2008/12/yslow_20.html

[20] State of Performance 2008, Steve Souders, 2008, http://www.
stevesouders.com/blog/2008/12/17/state-of-performance-2008/

[21] Apache JMeter, http://jakarta.apache.org/jmeter/

[22] Load test your Drupal application scalability with Apache JMe-
ter, John Quinn, 2008, http://www.johnandcailin.com/blog/john/
load-test-your-drupal-application-scalability-apache-jmeter

[23] Load test your Drupal application scalability with Apache JMeter: part
two, John Quinn, 2008, http://www.johnandcailin.com/blog/john/
load-test-your-drupal-application-scalability-apache-jmeter:
-part-two

[24] Gomez, http://www.gomez.com/

[25] Keynote, http://www.keynote.com/

[26] WebMetrics, http://www.webmetrics.com/

[27] Pingdom, http://pingdom.com/

[28] AJAX, http://en.wikipedia.org/wiki/AJAX

[29] Selenium, http://seleniumhq.org/

[30] Keynote KITE, http://kite.keynote.com/

[31] Gomez Script Recorder, http://www.gomeznetworks.com/help/Gomezu/
main/Gomez_university/3_Gomez_Script_Recorder/toc.htm

[32] WhitePages, http://whitepages.com/

[33] Velocity 2008, Jiffy: Open Source Performance Measurement and
Instrumentation, Scott Ruthfield, 2008, http://en.oreilly.com/
velocity2008/public/schedule/detail/4404

[34] Velocity 2008, video of the Jiffy presentation, Scott Ruthfield, 2008, http:
//blip.tv/file/1018527

[35] Jiffy, http://code.google.com/p/jiffy-web/

[36] Jiffy Firebug Extension, http://billwscott.com/jiffyext/

[37] Episodes: a Framework for Measuring Web Page Load Times, Steve Soud-
ers, July 2008, http://stevesouders.com/episodes/paper.php

[38] Episodes: a shared approach for timing web pages, Steve Souders, 2008,
http://stevesouders.com/docs/episodes-tae-20080930.ppt

[39] Google Analytics, http://google.com/analytics

[40] Episodes, Steve Souders, 2008, http://stevesouders.com/episodes/

[41] Episodes: a Framework for Measuring Web Page Load Times, Steve Soud-
ers, July 2008, http://stevesouders.com/episodes/paper.php

70

http://www.stevesouders.com/blog/2008/12/17/state-of-performance-2008/
http://www.stevesouders.com/blog/2008/12/17/state-of-performance-2008/
http://jakarta.apache.org/jmeter/
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.gomez.com/
http://www.keynote.com/
http://www.webmetrics.com/
http://pingdom.com/
http://en.wikipedia.org/wiki/AJAX
http://seleniumhq.org/
http://kite.keynote.com/
http://www.gomeznetworks.com/help/Gomezu/main/Gomez_university/3_Gomez_Script_Recorder/toc.htm
http://www.gomeznetworks.com/help/Gomezu/main/Gomez_university/3_Gomez_Script_Recorder/toc.htm
http://whitepages.com/
http://en.oreilly.com/velocity2008/public/schedule/detail/4404
http://en.oreilly.com/velocity2008/public/schedule/detail/4404
http://blip.tv/file/1018527
http://blip.tv/file/1018527
http://code.google.com/p/jiffy-web/
http://billwscott.com/jiffyext/
http://stevesouders.com/episodes/paper.php
http://stevesouders.com/docs/episodes-tae-20080930.ppt
http://google.com/analytics
http://stevesouders.com/episodes/
http://stevesouders.com/episodes/paper.php

[42] Episodes Drupal module, Wim Leers, 2009, http://drupal.org/project/
episodes

[43] Episodes Example, Steve Souders, 2008, http://stevesouders.com/
episodes/example.php

[44] Batch API, Drupal 6, http://api.drupal.org/api/group/batch/6

[45] Forms API, Drupal 6, http://api.drupal.org/api/group/form_api/6

[46] Hierarchical Select module, Wim Leers, http://drupal.org/project/
hierarchical_select

[47] Google Chart API, http://code.google.com/apis/chart/

[48] Browser.php, Chris Schuld, 2009, http://chrisschuld.com/projects/
browser-php-detecting-a-users-browser-from-php/

[49] inotify, http://en.wikipedia.org/wiki/Inotify

[50] pyinotify, http://pyinotify.sourceforge.net/

[51] FSEvents Programming Guide, 2008, http://developer.apple.
com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
Introduction/Introduction.html

[52] FSEvents review, John Siracusa, 2007, http://arstechnica.com/apple/
reviews/2007/10/mac-os-x-10-5.ars/7

[53] PyObj C, http://pyobjc.sourceforge.net/

[54] SQLite, http://www.sqlite.org/

[55] How SQLite is Tested, http://www.sqlite.org/testing.html

[56] shelve - Python object persistence, http://docs.python.org/library/
shelve.html

[57] pysqlite, http://docs.python.org/library/sqlite3.html

[58] smush.it, http://smush.it/

[59] Image Optimization Part 1: The Importance of Images, Stoyan Stefanov,
2008, http://yuiblog.com/blog/2008/10/29/imageopt-1/

[60] Image Optimization Part 2: Selecting the Right File Format, Stoyan Ste-
fanov, 2008, http://yuiblog.com/blog/2008/11/04/imageopt-2/

[61] Image Optimization, Part 3: Four Steps to File Size Reduction, Stoyan
Stefanov, 2008, http://yuiblog.com/blog/2008/11/14/imageopt-3/

[62] Image Optimization, Part 4: Progressive JPEG . . . Hot or Not?, Stoyan
Stefanov, 2008, http://yuiblog.com/blog/2008/12/05/imageopt-4/

[63] ImageMagick, http://imagemagick.org/

[64] pngcrush, http://pmt.sourceforge.net/pngcrush/

71

http://drupal.org/project/episodes
http://drupal.org/project/episodes
http://stevesouders.com/episodes/example.php
http://stevesouders.com/episodes/example.php
http://api.drupal.org/api/group/batch/6
http://api.drupal.org/api/group/form_api/6
http://drupal.org/project/hierarchical_select
http://drupal.org/project/hierarchical_select
http://code.google.com/apis/chart/
http://chrisschuld.com/projects/browser-php-detecting-a-users-browser-from-php/
http://chrisschuld.com/projects/browser-php-detecting-a-users-browser-from-php/
http://en.wikipedia.org/wiki/Inotify
http://pyinotify.sourceforge.net/
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://arstechnica.com/apple/reviews/2007/10/mac-os-x-10-5.ars/7
http://arstechnica.com/apple/reviews/2007/10/mac-os-x-10-5.ars/7
http://pyobjc.sourceforge.net/
http://www.sqlite.org/
http://www.sqlite.org/testing.html
http://docs.python.org/library/shelve.html
http://docs.python.org/library/shelve.html
http://docs.python.org/library/sqlite3.html
http://smush.it/
http://yuiblog.com/blog/2008/10/29/imageopt-1/
http://yuiblog.com/blog/2008/11/04/imageopt-2/
http://yuiblog.com/blog/2008/11/14/imageopt-3/
http://yuiblog.com/blog/2008/12/05/imageopt-4/
http://imagemagick.org/
http://pmt.sourceforge.net/pngcrush/

[65] jpegtran, http://jpegclub.org/

[66] gifsicle, http://www.lcdf.org/gifsicle/

[67] cssutils, http://cthedot.de/cssutils/

[68] YUI Compressor, http://www.julienlecomte.net/blog/2007/08/11/

[69] Rhino, http://www.mozilla.org/rhino/

[70] JSMin, The JavaScript Minifier, Douglas Crockford, 2003, http://
javascript.crockford.com/jsmin.html

[71] Django, http://www.djangoproject.com/

[72] Writing a custom storage system, Django 1.0 documentation, http://
docs.djangoproject.com/en/1.0/howto/custom-file-storage/

[73] django-storages, David Larlet et al., http://code.welldev.org/
django-storages/wiki/Home

[74] FTPStorage: saving large files + more robust exists(), Wim
Leers, 2009, http://code.welldev.org/django-storages/issue/
4/ftpstorage-saving-large-files-+-more-robust

[75] S3BotoStorage: set Content-Type header, ACL fixed, use
HTTP and disable query auth by default, Wim Leers,
2009, http://code.welldev.org/django-storages/issue/5/
s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by

[76] SymlinkOrCopyStorage: new custom storage system, Wim Leers,
2009, http://code.welldev.org/django-storages/issue/6/
symlinkorcopystorage-new-custom-storage

[77] ftplib — FTP protocol client, http://docs.python.org/library/
ftplib.html

[78] Amazon S3, http://aws.amazon.com/s3/

[79] Amazon CloudFront, http://aws.amazon.com/cloudfront/

[80] boto, http://code.google.com/p/boto/

[81] MogileFS, http://www.danga.com/mogilefs/

[82] Apache CouchDB, http://couchdb.apache.org/

[83] Stopping and Restarting - Apache HTTP Server, http://httpd.apache.
org/docs/2.2/stopping.html

[84] Pipes and Filters, http://en.wikipedia.org/wiki/Pipes_and_filters

[85] Pipes and Filters, Jorge Luis Ortega Arjona, Department of Computer Sci-
ence of the University College London, http://www.cs.ucl.ac.uk/staff/
J.Ortega-Arjona/patterns/PF.html

72

http://jpegclub.org/
http://www.lcdf.org/gifsicle/
http://cthedot.de/cssutils/
http://www.julienlecomte.net/blog/2007/08/11/
http://www.mozilla.org/rhino/
http://javascript.crockford.com/jsmin.html
http://javascript.crockford.com/jsmin.html
http://www.djangoproject.com/
http://docs.djangoproject.com/en/1.0/howto/custom-file-storage/
http://docs.djangoproject.com/en/1.0/howto/custom-file-storage/
http://code.welldev.org/django-storages/wiki/Home
http://code.welldev.org/django-storages/wiki/Home
http://code.welldev.org/django-storages/issue/4/ftpstorage-saving-large-files-+-more-robust
http://code.welldev.org/django-storages/issue/4/ftpstorage-saving-large-files-+-more-robust
http://code.welldev.org/django-storages/issue/5/s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by
http://code.welldev.org/django-storages/issue/5/s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by
http://code.welldev.org/django-storages/issue/6/symlinkorcopystorage-new-custom-storage
http://code.welldev.org/django-storages/issue/6/symlinkorcopystorage-new-custom-storage
http://docs.python.org/library/ftplib.html
http://docs.python.org/library/ftplib.html
http://aws.amazon.com/s3/
http://aws.amazon.com/cloudfront/
http://code.google.com/p/boto/
http://www.danga.com/mogilefs/
http://couchdb.apache.org/
http://httpd.apache.org/docs/2.2/stopping.html
http://httpd.apache.org/docs/2.2/stopping.html
http://en.wikipedia.org/wiki/Pipes_and_filters
http://www.cs.ucl.ac.uk/staff/J.Ortega-Arjona/patterns/PF.html
http://www.cs.ucl.ac.uk/staff/J.Ortega-Arjona/patterns/PF.html

[86] Pipe-and-filter, Jike Chong; Arlo Faria; Satish Nadathur; Youngmin Yi,
Electrical Engineering and Computer Sciences department of UC Berkely,
http://parlab.eecs.berkeley.edu/wiki/patterns/pipe-and-filter

[87] Pipes and Filters, Enterprise Integration Patterns, http://www.
eaipatterns.com/PipesAndFilters.html

[88] Currying, http://en.wikipedia.org/wiki/Currying

[89] PDO, http://php.net/pdo

73

http://parlab.eecs.berkeley.edu/wiki/patterns/pipe-and-filter
http://www.eaipatterns.com/PipesAndFilters.html
http://www.eaipatterns.com/PipesAndFilters.html
http://en.wikipedia.org/wiki/Currying
http://php.net/pdo

