Frequent Pattern Growth (FP-Growth) Algorithm
An Introduction

Florian Verhein
fverhein@it.usyd.edu.au

School of Information Technologies,
The University of Sydney,
Australia

Copyright 2008 Florian Verhein. Most figures derived from [1].

January 10, 2008

Outline

Introduction

FP-Tree data structure

Step 1: FP-Tree Construction

Step 2: Frequent Itemset Generation

Discussion
Introduction

- **Apriori**: uses a generate-and-test approach – generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)

- **FP-Growth**: allows frequent itemset discovery without candidate itemset generation. Two step approach:
 - **Step 1**: Build a compact data structure called the *FP-tree*
 - Built using 2 passes over the data-set.
 - **Step 2**: Extracts frequent itemsets directly from the FP-tree
 - Traversal through FP-Tree

Core Data Structure: FP-Tree

- Nodes correspond to items and have a counter
- FP-Growth reads 1 transaction at a time and maps it to a path
- Fixed order is used, so paths can overlap when transactions share items (when they have the same prefix).
- In this case, counters are incremented
- Pointers are maintained between nodes containing the same item, creating singly linked lists (dotted lines)
- The more paths that overlap, the higher the compression. FP-tree may fit in memory.
- Frequent itemsets extracted from the FP-Tree.
FP-Tree is constructed using 2 passes over the data-set:

- **Pass 1:**
 - Scan data and find support for each item.
 - Discard infrequent items.
 - Sort frequent items in decreasing order based on their support.
 - For our example: \(a, b, c, d, e\)
 - Use this order when building the FP-Tree, so common prefixes can be shared.

- **Pass 2:** construct the FP-Tree (see diagram on next slide)
 - Read transaction 1: \(\{a, b\}\)
 - Create 2 nodes \(a\) and \(b\) and the path \(null \rightarrow a \rightarrow b\). Set counts of \(a\) and \(b\) to 1.
 - Read transaction 2: \(\{b, c, d\}\)
 - Create 3 nodes for \(b\), \(c\) and \(d\) and the path \(null \rightarrow b \rightarrow c \rightarrow d\). Set counts to 1.
 - Note that although transaction 1 and 2 share \(b\), the paths are disjoint as they don’t share a common prefix. Add the link between the \(b\)’s.
 - Read transaction 3: \(\{a, c, d, e\}\)
 - It shares common prefix item \(a\) with transaction 1 so the path for transaction 1 and 3 will overlap and the frequency count for node \(a\) will be incremented by 1. Add links between the \(c\)’s and \(d\)’s.
 - Continue until all transactions are mapped to a path in the FP-tree.
Step 1: FP-Tree Construction (Example)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{a,b}</td>
</tr>
<tr>
<td>2</td>
<td>{b,c,d}</td>
</tr>
<tr>
<td>3</td>
<td>{a,c,d,e}</td>
</tr>
<tr>
<td>4</td>
<td>{a,d,e}</td>
</tr>
<tr>
<td>5</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>6</td>
<td>{a,b,c,d}</td>
</tr>
<tr>
<td>7</td>
<td>{a}</td>
</tr>
<tr>
<td>8</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>9</td>
<td>{a,b,d}</td>
</tr>
<tr>
<td>10</td>
<td>{b,c,e}</td>
</tr>
</tbody>
</table>

FP-Tree size

- The FP-Tree usually has a smaller size than the uncompressed data – typically many transactions share items (and hence prefixes).
 - **Best case scenario:** all transactions contain the same set of items.
 - 1 path in the FP-tree
 - **Worst case scenario:** every transaction has a unique set of items (no items in common)
 - Size of the FP-tree is at least as large as the original data.
 - Storage requirements for the FP-tree are higher – need to store the pointers between the nodes and the counters.
- The size of the FP-tree depends on how the items are ordered
 - Ordering by decreasing support is typically used but it does not always lead to the smallest tree (it’s a heuristic).
Step 2: Frequent Itemset Generation

- FP-Growth extracts frequent itemsets from the FP-tree.
- Bottom-up algorithm – from the leaves towards the root
 - Divide and conquer: first look for frequent itemsets ending in \(e \), then \(de \), etc. . . then \(d \), then \(cd \), etc. . .
 - First, extract prefix path sub-trees ending in an item(set). (hint: use the linked lists)

\[\uparrow \text{Complete FP-tree} \]

\[\rightarrow \text{Example: prefix path sub-trees} \]

Step 2: Frequent Itemset Generation

- Each prefix path sub-tree is processed recursively to extract the frequent itemsets. Solutions are then merged.
 - E.g. the prefix path sub-tree for \(e \) will be used to extract frequent itemsets ending in \(e \), then in \(de \), \(ce \), \(be \) and \(ae \), then in \(cde \), \(bde \), \(cde \), etc.
 - Divide and conquer approach

Prefix path sub-tree ending in \(e \).
Example

Let $\text{minSup} = 2$ and extract all frequent itemsets containing e.

1. Obtain the prefix path sub-tree for e:

2. Check if e is a frequent item by adding the counts along the linked list (dotted line). If so, extract it.
 - Yes, count = 3 so \{e\} is extracted as a frequent itemset.

3. As e is frequent, find frequent itemsets ending in e. i.e. de, ce, be and ae.
 - i.e. decompose the problem recursively.
 - To do this, we must first to obtain the conditional FP-tree for e.

Conditional FP-Tree

The FP-Tree that would be built if we only consider transactions containing a particular itemset (and then removing that itemset from all transactions).

Example: FP-Tree conditional on e.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a,b)</td>
</tr>
<tr>
<td>2</td>
<td>(b,c,d)</td>
</tr>
<tr>
<td>3</td>
<td>(a,c,d,e)</td>
</tr>
<tr>
<td>4</td>
<td>(a,d,e)</td>
</tr>
<tr>
<td>5</td>
<td>(a,b,e)</td>
</tr>
<tr>
<td>6</td>
<td>(a,b,c,d)</td>
</tr>
<tr>
<td>7</td>
<td>(a)</td>
</tr>
<tr>
<td>8</td>
<td>(e,b,e)</td>
</tr>
<tr>
<td>9</td>
<td>(e,b,d)</td>
</tr>
<tr>
<td>10</td>
<td>(b,c,e)</td>
</tr>
</tbody>
</table>
Conditional FP-Tree

To obtain the *conditional FP-tree* for e from the *prefix sub-tree* ending in e:

- Update the support counts along the prefix paths (from e) to reflect the number of transactions containing e.
 - b and c should be set to 1 and a to 2.

![Conditional FP-Tree Diagram]

Conditional FP-Tree

To obtain the *conditional FP-tree* for e from the *prefix sub-tree* ending in e:

- Remove the nodes containing e – information about node e is no longer needed because of the previous step.

![Conditional FP-Tree Diagram]
Conditional FP-Tree

To obtain the *conditional FP-tree for* e *from the prefix sub-tree ending in* e:

- Remove infrequent items (nodes) from the prefix paths
- **E.g.** b has a support of 1 (note this really means be has a support of 1). i.e. there is only 1 transaction containing b and e so be is infrequent – can remove b.

▶ **Question:** why were c and d not removed?

![Conditional FP-tree diagram](image_url)

Example (continued)

▶ 4. Use the the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae

 - Note that be is not considered as b is not in the conditional FP-tree for e.
 - For each of them (e.g. de), find the prefix paths from the conditional tree for e, extract frequent itemsets, generate conditional FP-tree, etc... (recursive)
 - **Example:** $e \rightarrow de \rightarrow ade$ ($\{d, e\}, \{a, d, e\}$ are found to be frequent)

![Conditional FP-tree diagrams](image_url)
4. Use the the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae

Example: $e \rightarrow ce$ ($\{c,e\}$ is found to be frequent)

Example (continued)

▶ etc... (ae, then do the whole thing for b, etc)

Result

▶ Frequent itemsets found (ordered by suffix and order in which they are found):

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Frequent Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>${c}, {d,c}, {a,d,e}, {c,e}, {a,e}$</td>
</tr>
<tr>
<td>d</td>
<td>${d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}$</td>
</tr>
<tr>
<td>c</td>
<td>${c}, {b,c}, {a,b,c}, {a,e}$</td>
</tr>
<tr>
<td>b</td>
<td>${b}, {a,b}$</td>
</tr>
<tr>
<td>a</td>
<td>${a}$</td>
</tr>
</tbody>
</table>
Discussion

- Advantages of FP-Growth
 - only 2 passes over data-set
 - “compresses” data-set
 - no candidate generation
 - much faster than Apriori

- Disadvantages of FP-Growth
 - FP-Tree may not fit in memory!!
 - FP-Tree is expensive to build
 - Trade-off: takes time to build, but once it is built, frequent itemsets are read off easily.
 - Time is wasted (especially if support threshold is high), as the only pruning that can be done is on single items.
 - support can only be calculated once the entire data-set is added to the FP-Tree.

References

 - Chapter 6: *Association Analysis: Basic Concepts and Algorithms*
 - Available from